miR-421 介导的对 FGF13 的抑制是通过抑制内质网应激改善心肌肥大的一种新机制

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY European journal of pharmacology Pub Date : 2024-10-31 DOI:10.1016/j.ejphar.2024.177085
Yaxin Zhi , Yanru Duan , Ying Zhang , Haijuan Hu , Fengli Hu , Pengfei Wang , Bin Liu , Chuan Wang , Demin Liu , Guoqiang Gu
{"title":"miR-421 介导的对 FGF13 的抑制是通过抑制内质网应激改善心肌肥大的一种新机制","authors":"Yaxin Zhi ,&nbsp;Yanru Duan ,&nbsp;Ying Zhang ,&nbsp;Haijuan Hu ,&nbsp;Fengli Hu ,&nbsp;Pengfei Wang ,&nbsp;Bin Liu ,&nbsp;Chuan Wang ,&nbsp;Demin Liu ,&nbsp;Guoqiang Gu","doi":"10.1016/j.ejphar.2024.177085","DOIUrl":null,"url":null,"abstract":"<div><div>Pathological cardiac hypertrophy is an independent risk factor for heart failure. Currently, clinical treatments offer limited effectiveness, and both mortality and morbidity from cardiac hypertrophy and heart failure continue to be significant. Therefore, it is extremely urgent to find new intervention targets to prevent and alleviate pathological cardiac hypertrophy. In this study, we explored FGF13 expression and its upstream regulators in hypertrophic hearts. Firstly, we observed an increase in FGF13 expression levels in human hypertrophic myocardium tissues, as well as in mouse models of TAC-induced hypertrophy and in neonatal rat cardiomyocyte (NRCM) models induced by isoproterenol (ISO). Moreover, these elevated levels of FGF13 were shown to positively correlate with hypertrophic markers, including ANP and BNP. By using both gain-of-function and loss-of-function approaches in an in vitro hypertrophy model, we demonstrated that FGF13 knockdown could inhibit endoplasmic reticulum stress (ERS), thereby ameliorating cardiomyocyte hypertrophy. Meanwhile, we investigated the upstream regulators of FGF13 in hypertrophic hearts, and a dual-luciferase reporter assay confirmed that FGF13 is a direct target of miR-421. Overexpression of miR-421 decreased the protein level of FGF13 and ameliorated ISO-induced cardiomyocyte hypertrophy via modulating ER stress. In contrast, overexpression of FGF13 attenuated the ameliorative effect of miR-421 on ISO-induced cardiomyocyte hypertrophy. Taken together, the present results suggested that miR-421 ameliorated ISO-induced cardiomyocyte hypertrophy by negatively regulating FGF13 expression. This finding may offer a novel approach for the treatment of cardiac hypertrophy.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"985 ","pages":"Article 177085"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-421-mediated suppression of FGF13 as a novel mechanism ameliorates cardiac hypertrophy by inhibiting endoplasmic reticulum stress\",\"authors\":\"Yaxin Zhi ,&nbsp;Yanru Duan ,&nbsp;Ying Zhang ,&nbsp;Haijuan Hu ,&nbsp;Fengli Hu ,&nbsp;Pengfei Wang ,&nbsp;Bin Liu ,&nbsp;Chuan Wang ,&nbsp;Demin Liu ,&nbsp;Guoqiang Gu\",\"doi\":\"10.1016/j.ejphar.2024.177085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pathological cardiac hypertrophy is an independent risk factor for heart failure. Currently, clinical treatments offer limited effectiveness, and both mortality and morbidity from cardiac hypertrophy and heart failure continue to be significant. Therefore, it is extremely urgent to find new intervention targets to prevent and alleviate pathological cardiac hypertrophy. In this study, we explored FGF13 expression and its upstream regulators in hypertrophic hearts. Firstly, we observed an increase in FGF13 expression levels in human hypertrophic myocardium tissues, as well as in mouse models of TAC-induced hypertrophy and in neonatal rat cardiomyocyte (NRCM) models induced by isoproterenol (ISO). Moreover, these elevated levels of FGF13 were shown to positively correlate with hypertrophic markers, including ANP and BNP. By using both gain-of-function and loss-of-function approaches in an in vitro hypertrophy model, we demonstrated that FGF13 knockdown could inhibit endoplasmic reticulum stress (ERS), thereby ameliorating cardiomyocyte hypertrophy. Meanwhile, we investigated the upstream regulators of FGF13 in hypertrophic hearts, and a dual-luciferase reporter assay confirmed that FGF13 is a direct target of miR-421. Overexpression of miR-421 decreased the protein level of FGF13 and ameliorated ISO-induced cardiomyocyte hypertrophy via modulating ER stress. In contrast, overexpression of FGF13 attenuated the ameliorative effect of miR-421 on ISO-induced cardiomyocyte hypertrophy. Taken together, the present results suggested that miR-421 ameliorated ISO-induced cardiomyocyte hypertrophy by negatively regulating FGF13 expression. This finding may offer a novel approach for the treatment of cardiac hypertrophy.</div></div>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\"985 \",\"pages\":\"Article 177085\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014299924007751\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299924007751","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

病理性心肌肥厚是心力衰竭的独立危险因素。目前,临床治疗效果有限,心肌肥厚和心力衰竭的死亡率和发病率仍然很高。因此,寻找新的干预靶点来预防和缓解病理性心脏肥大迫在眉睫。本研究探讨了肥厚型心脏中 FGF13 的表达及其上游调节因子。首先,我们观察到 FGF13 在人类肥厚心肌组织、TAC 诱导的肥厚小鼠模型以及异丙肾上腺素(ISO)诱导的新生大鼠心肌细胞(NRCM)模型中的表达水平均有所升高。此外,这些升高的 FGF13 水平与肥厚标志物(包括 ANP 和 BNP)呈正相关。通过在体外肥厚模型中使用功能增益和功能缺失两种方法,我们证实敲除 FGF13 可抑制内质网应激(ERS),从而改善心肌细胞肥厚。同时,我们研究了肥厚型心脏中FGF13的上游调控因子,双荧光素酶报告实验证实FGF13是miR-421的直接靶标。过表达 miR-421 可降低 FGF13 蛋白水平,并通过调节 ER 应激改善 ISO 诱导的心肌细胞肥大。相反,FGF13的过表达削弱了miR-421对ISO诱导的心肌细胞肥大的改善作用。综上所述,本研究结果表明,miR-421 通过负调控 FGF13 的表达来改善 ISO 诱导的心肌细胞肥大。这一发现可能为治疗心肌肥厚提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-421-mediated suppression of FGF13 as a novel mechanism ameliorates cardiac hypertrophy by inhibiting endoplasmic reticulum stress
Pathological cardiac hypertrophy is an independent risk factor for heart failure. Currently, clinical treatments offer limited effectiveness, and both mortality and morbidity from cardiac hypertrophy and heart failure continue to be significant. Therefore, it is extremely urgent to find new intervention targets to prevent and alleviate pathological cardiac hypertrophy. In this study, we explored FGF13 expression and its upstream regulators in hypertrophic hearts. Firstly, we observed an increase in FGF13 expression levels in human hypertrophic myocardium tissues, as well as in mouse models of TAC-induced hypertrophy and in neonatal rat cardiomyocyte (NRCM) models induced by isoproterenol (ISO). Moreover, these elevated levels of FGF13 were shown to positively correlate with hypertrophic markers, including ANP and BNP. By using both gain-of-function and loss-of-function approaches in an in vitro hypertrophy model, we demonstrated that FGF13 knockdown could inhibit endoplasmic reticulum stress (ERS), thereby ameliorating cardiomyocyte hypertrophy. Meanwhile, we investigated the upstream regulators of FGF13 in hypertrophic hearts, and a dual-luciferase reporter assay confirmed that FGF13 is a direct target of miR-421. Overexpression of miR-421 decreased the protein level of FGF13 and ameliorated ISO-induced cardiomyocyte hypertrophy via modulating ER stress. In contrast, overexpression of FGF13 attenuated the ameliorative effect of miR-421 on ISO-induced cardiomyocyte hypertrophy. Taken together, the present results suggested that miR-421 ameliorated ISO-induced cardiomyocyte hypertrophy by negatively regulating FGF13 expression. This finding may offer a novel approach for the treatment of cardiac hypertrophy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
期刊最新文献
Signal profiles and spatial regulation of β-arrestin recruitment through Gβ5 and GRK3 at the μ-opioid receptor. A Comprehensive Review of Targeting RAF Kinase in Cancer Targeting RAF Kinase in Cancer. Deficiency of Endothelial TRPV4 Cation Channels Ameliorates Experimental Abdominal Aortic Aneurysm. Targets for improving prostate tumor response to radiotherapy. Role of the ventral tegmental area in general anesthesia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1