Shao-hua Ren , Bo Shao , Hong-da Wang , Jing-yi Zhang , Hong Qin , Cheng-lu Sun , Yang-lin Zhu , Zhao-bo Wang , Xu Lan , Yong-chang Gao , Hao Wang
{"title":"氧化苦参碱通过调节免疫反应和抑制纤维化减轻慢性异体移植排斥反应","authors":"Shao-hua Ren , Bo Shao , Hong-da Wang , Jing-yi Zhang , Hong Qin , Cheng-lu Sun , Yang-lin Zhu , Zhao-bo Wang , Xu Lan , Yong-chang Gao , Hao Wang","doi":"10.1016/j.ejphar.2024.177082","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Chronic rejection (CR) is a significant obstacle to long-term allograft survival. Oxymatrine (OMT) is a prominent bioactive compound widely utilized in traditional Chinese medicine for the management of inflammatory disorders and it has considerable potential as a therapeutic candidate for the treatment of CR.</div></div><div><h3>Methods</h3><div>Well-established major histocompatibility complex (MHC) class II mismatched B6 mice. C-H-2<sup>bm12</sup>-to-C57BL/6 mouse transplantation was used as a CR model. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and Masson's trichrome staining were used to assess pathological changes in the grafts, and the percentages of immune cells were determined by flow cytometry. The effects of OMT on the regulation of CD4<sup>+</sup> T cell differentiation and cytokine secretion were verified <em>in vitro</em>.</div></div><div><h3>Results</h3><div>OMT effectively alleviated pathological graft damage, characterized by chronic changes in intimal lesions, vasculopathy, and fibrosis and significantly prolonged cardiac allograft survival. OMT exerted its immunomodulatory effects by inhibiting T helper 1 (Th1) and T helper 17 (Th17) cell differentiation while promoting Treg differentiation both <em>in vivo</em> and <em>in vitro.</em> Further studies revealed that OMT inhibited the phosphorylation of mammalian target of rapamycin (mTOR), which is a potential mechanism underlying its immunosuppressive effects. OMT also inhibited the activation of B cells and the production of donor-specific antibody (DSA). In addition, OMT effectively alleviated chronic changes in fibrosis in cardiac allografts, and these changes may be related to the inhibition of the transforming growth factor-β (TGF-β)-Smad 2/3 pathway.</div></div><div><h3>Conclusions</h3><div>OMT attenuated CR by modulating the immune response and inhibiting graft fibrosis. Further in-depth investigations of OMT may provide valuable insights into the development of novel therapeutic strategies for CR inhibition.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"985 ","pages":"Article 177082"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxymatrine attenuates chronic allograft rejection by modulating immune responses and inhibiting fibrosis\",\"authors\":\"Shao-hua Ren , Bo Shao , Hong-da Wang , Jing-yi Zhang , Hong Qin , Cheng-lu Sun , Yang-lin Zhu , Zhao-bo Wang , Xu Lan , Yong-chang Gao , Hao Wang\",\"doi\":\"10.1016/j.ejphar.2024.177082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Chronic rejection (CR) is a significant obstacle to long-term allograft survival. Oxymatrine (OMT) is a prominent bioactive compound widely utilized in traditional Chinese medicine for the management of inflammatory disorders and it has considerable potential as a therapeutic candidate for the treatment of CR.</div></div><div><h3>Methods</h3><div>Well-established major histocompatibility complex (MHC) class II mismatched B6 mice. C-H-2<sup>bm12</sup>-to-C57BL/6 mouse transplantation was used as a CR model. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and Masson's trichrome staining were used to assess pathological changes in the grafts, and the percentages of immune cells were determined by flow cytometry. The effects of OMT on the regulation of CD4<sup>+</sup> T cell differentiation and cytokine secretion were verified <em>in vitro</em>.</div></div><div><h3>Results</h3><div>OMT effectively alleviated pathological graft damage, characterized by chronic changes in intimal lesions, vasculopathy, and fibrosis and significantly prolonged cardiac allograft survival. OMT exerted its immunomodulatory effects by inhibiting T helper 1 (Th1) and T helper 17 (Th17) cell differentiation while promoting Treg differentiation both <em>in vivo</em> and <em>in vitro.</em> Further studies revealed that OMT inhibited the phosphorylation of mammalian target of rapamycin (mTOR), which is a potential mechanism underlying its immunosuppressive effects. OMT also inhibited the activation of B cells and the production of donor-specific antibody (DSA). In addition, OMT effectively alleviated chronic changes in fibrosis in cardiac allografts, and these changes may be related to the inhibition of the transforming growth factor-β (TGF-β)-Smad 2/3 pathway.</div></div><div><h3>Conclusions</h3><div>OMT attenuated CR by modulating the immune response and inhibiting graft fibrosis. Further in-depth investigations of OMT may provide valuable insights into the development of novel therapeutic strategies for CR inhibition.</div></div>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\"985 \",\"pages\":\"Article 177082\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014299924007726\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299924007726","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
背景:慢性排斥反应(CR)是异体移植长期存活的一大障碍。氧化苦参碱(OMT)是一种突出的生物活性化合物,在传统中药中被广泛用于治疗炎症性疾病,作为治疗慢性排斥反应的候选药物具有相当大的潜力:方法:采用成熟的主要组织相容性复合体(MHC)II类错配B6小鼠。C-H-2bm12到C57BL/6小鼠移植被用作CR模型。采用苏木精和伊红(H&E)染色、免疫组化和马森三色染色评估移植物的病理变化,并通过流式细胞术测定免疫细胞的百分比。在体外验证了 OMT 对 CD4+ T 细胞分化和细胞因子分泌的调节作用:结果:OMT有效缓解了以内膜病变、血管病变和纤维化的慢性变化为特征的病理移植物损伤,并显著延长了心脏异体移植的存活时间。OMT通过抑制T辅助细胞1(Th1)和T辅助细胞17(Th17)的分化,同时促进体内和体外Treg的分化来发挥其免疫调节作用。进一步的研究发现,OMT 可抑制哺乳动物雷帕霉素靶标(mTOR)的磷酸化,这是其免疫抑制作用的潜在机制。OMT 还能抑制 B 细胞的活化和供体特异性抗体(DSA)的产生。此外,OMT还有效缓解了心脏异体移植物纤维化的慢性变化,这些变化可能与抑制转化生长因子-β(TGF-β)-Smad 2/3通路有关:结论:OMT通过调节免疫反应和抑制移植物纤维化来减轻CR。进一步深入研究 OMT 可为开发抑制 CR 的新型治疗策略提供有价值的见解。
Oxymatrine attenuates chronic allograft rejection by modulating immune responses and inhibiting fibrosis
Background
Chronic rejection (CR) is a significant obstacle to long-term allograft survival. Oxymatrine (OMT) is a prominent bioactive compound widely utilized in traditional Chinese medicine for the management of inflammatory disorders and it has considerable potential as a therapeutic candidate for the treatment of CR.
Methods
Well-established major histocompatibility complex (MHC) class II mismatched B6 mice. C-H-2bm12-to-C57BL/6 mouse transplantation was used as a CR model. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and Masson's trichrome staining were used to assess pathological changes in the grafts, and the percentages of immune cells were determined by flow cytometry. The effects of OMT on the regulation of CD4+ T cell differentiation and cytokine secretion were verified in vitro.
Results
OMT effectively alleviated pathological graft damage, characterized by chronic changes in intimal lesions, vasculopathy, and fibrosis and significantly prolonged cardiac allograft survival. OMT exerted its immunomodulatory effects by inhibiting T helper 1 (Th1) and T helper 17 (Th17) cell differentiation while promoting Treg differentiation both in vivo and in vitro. Further studies revealed that OMT inhibited the phosphorylation of mammalian target of rapamycin (mTOR), which is a potential mechanism underlying its immunosuppressive effects. OMT also inhibited the activation of B cells and the production of donor-specific antibody (DSA). In addition, OMT effectively alleviated chronic changes in fibrosis in cardiac allografts, and these changes may be related to the inhibition of the transforming growth factor-β (TGF-β)-Smad 2/3 pathway.
Conclusions
OMT attenuated CR by modulating the immune response and inhibiting graft fibrosis. Further in-depth investigations of OMT may provide valuable insights into the development of novel therapeutic strategies for CR inhibition.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.