Lukas Frontzkowski, Felix Fehring, Benedikt M. Frey, Paweł P. Wróbel, Antonia Reibelt, Focko Higgen, Silke Wolf, Winifried Backhaus, Hanna Braaß, Philipp J. Koch, Chi-un Choe, Marlene Bönstrup, Bastian Cheng, Götz Thomalla, Christian Gerloff, Fanny Quandt, Robert Schulz
{"title":"前顶叶结构网络断裂与严重中风后的预后有关","authors":"Lukas Frontzkowski, Felix Fehring, Benedikt M. Frey, Paweł P. Wróbel, Antonia Reibelt, Focko Higgen, Silke Wolf, Winifried Backhaus, Hanna Braaß, Philipp J. Koch, Chi-un Choe, Marlene Bönstrup, Bastian Cheng, Götz Thomalla, Christian Gerloff, Fanny Quandt, Robert Schulz","doi":"10.1002/hbm.70060","DOIUrl":null,"url":null,"abstract":"<p>Structural disconnectome analyses have provided valuable insights into how a stroke lesion results in widespread network disturbances and how these relate to deficits, recovery patterns, and outcomes. Previous analyses have primarily focused on patients with relatively mild to moderate deficits. However, outcomes vary among survivors of severe strokes, and the mechanisms of recovery remain poorly understood. This study assesses the association between lesion-induced network disconnection and outcome after severe stroke. Thirty-eight ischaemic stroke patients underwent MRI brain imaging early after stroke and longitudinal clinical follow-up. Lesion information was integrated with normative connectome data to infer individual disconnectome profiles on a localized regional and region-to-region pathway level. Ordinal logistic regressions were computed to link disconnectome information to the modified Rankin Scale after 3–6 months. Disconnections of ipsilesional frontal, parietal, and temporal cortical brain areas were significantly associated with a worse motor outcome after a severe stroke, adjusted for the initial deficit, lesion volume, and age. The analysis of the underlying pathways mediating this association revealed location-specific results: For frontal, prefrontal, and temporal brain areas, the association was primarily driven by relatively sparse intrahemispheric disconnections. In contrast, the ipsilesional primary motor cortex, the dorsal premotor cortex, and various parietal brain regions showed a remarkable involvement of either frontoparietal intrahemispheric or additionally interhemispheric disconnections. These results indicate that localized disconnection of multiple regions embedded in the structural frontoparietal network correlates with worse outcomes after severe stroke. Specifically, primary motor and parietal cortices might gain particular importance as they structurally link frontoparietal networks of both hemispheres. These data shed novel light on the significance of distinct brain networks for recovery after a severe stroke.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 16","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530704/pdf/","citationCount":"0","resultStr":"{\"title\":\"Frontoparietal Structural Network Disconnections Correlate With Outcome After a Severe Stroke\",\"authors\":\"Lukas Frontzkowski, Felix Fehring, Benedikt M. Frey, Paweł P. Wróbel, Antonia Reibelt, Focko Higgen, Silke Wolf, Winifried Backhaus, Hanna Braaß, Philipp J. Koch, Chi-un Choe, Marlene Bönstrup, Bastian Cheng, Götz Thomalla, Christian Gerloff, Fanny Quandt, Robert Schulz\",\"doi\":\"10.1002/hbm.70060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structural disconnectome analyses have provided valuable insights into how a stroke lesion results in widespread network disturbances and how these relate to deficits, recovery patterns, and outcomes. Previous analyses have primarily focused on patients with relatively mild to moderate deficits. However, outcomes vary among survivors of severe strokes, and the mechanisms of recovery remain poorly understood. This study assesses the association between lesion-induced network disconnection and outcome after severe stroke. Thirty-eight ischaemic stroke patients underwent MRI brain imaging early after stroke and longitudinal clinical follow-up. Lesion information was integrated with normative connectome data to infer individual disconnectome profiles on a localized regional and region-to-region pathway level. Ordinal logistic regressions were computed to link disconnectome information to the modified Rankin Scale after 3–6 months. Disconnections of ipsilesional frontal, parietal, and temporal cortical brain areas were significantly associated with a worse motor outcome after a severe stroke, adjusted for the initial deficit, lesion volume, and age. The analysis of the underlying pathways mediating this association revealed location-specific results: For frontal, prefrontal, and temporal brain areas, the association was primarily driven by relatively sparse intrahemispheric disconnections. In contrast, the ipsilesional primary motor cortex, the dorsal premotor cortex, and various parietal brain regions showed a remarkable involvement of either frontoparietal intrahemispheric or additionally interhemispheric disconnections. These results indicate that localized disconnection of multiple regions embedded in the structural frontoparietal network correlates with worse outcomes after severe stroke. Specifically, primary motor and parietal cortices might gain particular importance as they structurally link frontoparietal networks of both hemispheres. These data shed novel light on the significance of distinct brain networks for recovery after a severe stroke.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"45 16\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70060\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70060","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Frontoparietal Structural Network Disconnections Correlate With Outcome After a Severe Stroke
Structural disconnectome analyses have provided valuable insights into how a stroke lesion results in widespread network disturbances and how these relate to deficits, recovery patterns, and outcomes. Previous analyses have primarily focused on patients with relatively mild to moderate deficits. However, outcomes vary among survivors of severe strokes, and the mechanisms of recovery remain poorly understood. This study assesses the association between lesion-induced network disconnection and outcome after severe stroke. Thirty-eight ischaemic stroke patients underwent MRI brain imaging early after stroke and longitudinal clinical follow-up. Lesion information was integrated with normative connectome data to infer individual disconnectome profiles on a localized regional and region-to-region pathway level. Ordinal logistic regressions were computed to link disconnectome information to the modified Rankin Scale after 3–6 months. Disconnections of ipsilesional frontal, parietal, and temporal cortical brain areas were significantly associated with a worse motor outcome after a severe stroke, adjusted for the initial deficit, lesion volume, and age. The analysis of the underlying pathways mediating this association revealed location-specific results: For frontal, prefrontal, and temporal brain areas, the association was primarily driven by relatively sparse intrahemispheric disconnections. In contrast, the ipsilesional primary motor cortex, the dorsal premotor cortex, and various parietal brain regions showed a remarkable involvement of either frontoparietal intrahemispheric or additionally interhemispheric disconnections. These results indicate that localized disconnection of multiple regions embedded in the structural frontoparietal network correlates with worse outcomes after severe stroke. Specifically, primary motor and parietal cortices might gain particular importance as they structurally link frontoparietal networks of both hemispheres. These data shed novel light on the significance of distinct brain networks for recovery after a severe stroke.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.