Nur Izzati Huda Zulkarnain, Alireza Sadeghi-Tarakameh, Russell L. Lagore, Dee M. Koski, Gregory J. Metzger, Zuzan Cayci, Noam Harel, Yigitcan Eryaman
{"title":"使用环形收发器获取围绕脑深部刺激电极的术中磁共振图像的可行性。","authors":"Nur Izzati Huda Zulkarnain, Alireza Sadeghi-Tarakameh, Russell L. Lagore, Dee M. Koski, Gregory J. Metzger, Zuzan Cayci, Noam Harel, Yigitcan Eryaman","doi":"10.1016/j.neuroimage.2024.120912","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Magnetic resonance imaging (MRI) provides excellent soft tissue contrast for visualizing of deep brain stimulation (DBS) targets, allowing validation of the electrode placement, and assessing complications such as microhemorrhage and edema. However, the presence of the electrodes can introduce challenges such as radiofrequency (RF) induced current artifacts and excessive heating of the electrode contacts. Additionally, extended procedure times are also considered a disadvantage when using MRI as an intraoperative imaging modality following DBS electrode placement.</div></div><div><h3>Method</h3><div>We propose a novel approach of using toroidal resonators to inductively couple the shaft of the electrode to the scanner's transmit-receive chain thereby utilizing it as a localized imaging antenna. The small extent of the field generated by the electrode antenna allows fast imaging with smaller field-of-views (FOVs) spanning only a few centimeters. Furthermore, we present a fast and accurate safety monitoring strategy that can be used to predict the temperature increase at the electrical contacts of the electrode.</div></div><div><h3>Results and Discussion</h3><div>Imaging with the toroidal transceiver yields a higher signal-to-noise ratio (SNR) efficiency in proximity to the electrodes. This approach reduced the RF induced current artifacts around the electrode which enhanced the visibility of the shaft and improved electrode localization. Moreover, the limited sensitivity around the electrode can be exploited to perform fast scans with small FOVs. The predicted heating around DBS contacts was in quantitative agreement with the experimental heating in swine studies with a normalized root-mean-square error (NRMSE) ≤ 0.09.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"302 ","pages":"Article 120912"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of using toroidal transceivers for acquiring intraoperative MR images around deep brain stimulation electrodes\",\"authors\":\"Nur Izzati Huda Zulkarnain, Alireza Sadeghi-Tarakameh, Russell L. Lagore, Dee M. Koski, Gregory J. Metzger, Zuzan Cayci, Noam Harel, Yigitcan Eryaman\",\"doi\":\"10.1016/j.neuroimage.2024.120912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>Magnetic resonance imaging (MRI) provides excellent soft tissue contrast for visualizing of deep brain stimulation (DBS) targets, allowing validation of the electrode placement, and assessing complications such as microhemorrhage and edema. However, the presence of the electrodes can introduce challenges such as radiofrequency (RF) induced current artifacts and excessive heating of the electrode contacts. Additionally, extended procedure times are also considered a disadvantage when using MRI as an intraoperative imaging modality following DBS electrode placement.</div></div><div><h3>Method</h3><div>We propose a novel approach of using toroidal resonators to inductively couple the shaft of the electrode to the scanner's transmit-receive chain thereby utilizing it as a localized imaging antenna. The small extent of the field generated by the electrode antenna allows fast imaging with smaller field-of-views (FOVs) spanning only a few centimeters. Furthermore, we present a fast and accurate safety monitoring strategy that can be used to predict the temperature increase at the electrical contacts of the electrode.</div></div><div><h3>Results and Discussion</h3><div>Imaging with the toroidal transceiver yields a higher signal-to-noise ratio (SNR) efficiency in proximity to the electrodes. This approach reduced the RF induced current artifacts around the electrode which enhanced the visibility of the shaft and improved electrode localization. Moreover, the limited sensitivity around the electrode can be exploited to perform fast scans with small FOVs. The predicted heating around DBS contacts was in quantitative agreement with the experimental heating in swine studies with a normalized root-mean-square error (NRMSE) ≤ 0.09.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"302 \",\"pages\":\"Article 120912\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811924004099\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924004099","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Feasibility of using toroidal transceivers for acquiring intraoperative MR images around deep brain stimulation electrodes
Introduction
Magnetic resonance imaging (MRI) provides excellent soft tissue contrast for visualizing of deep brain stimulation (DBS) targets, allowing validation of the electrode placement, and assessing complications such as microhemorrhage and edema. However, the presence of the electrodes can introduce challenges such as radiofrequency (RF) induced current artifacts and excessive heating of the electrode contacts. Additionally, extended procedure times are also considered a disadvantage when using MRI as an intraoperative imaging modality following DBS electrode placement.
Method
We propose a novel approach of using toroidal resonators to inductively couple the shaft of the electrode to the scanner's transmit-receive chain thereby utilizing it as a localized imaging antenna. The small extent of the field generated by the electrode antenna allows fast imaging with smaller field-of-views (FOVs) spanning only a few centimeters. Furthermore, we present a fast and accurate safety monitoring strategy that can be used to predict the temperature increase at the electrical contacts of the electrode.
Results and Discussion
Imaging with the toroidal transceiver yields a higher signal-to-noise ratio (SNR) efficiency in proximity to the electrodes. This approach reduced the RF induced current artifacts around the electrode which enhanced the visibility of the shaft and improved electrode localization. Moreover, the limited sensitivity around the electrode can be exploited to perform fast scans with small FOVs. The predicted heating around DBS contacts was in quantitative agreement with the experimental heating in swine studies with a normalized root-mean-square error (NRMSE) ≤ 0.09.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.