{"title":"通过改变凝血因子的基因表达,睾酮替代物对止血系统有好处。","authors":"Jafar Vatandoost, Amirreza Yaghoubi-Nezhad, Amir Masoud Sadr, Madjid Momeni-Moghaddam, Toktam Hajjar","doi":"10.1016/j.steroids.2024.109525","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to investigate the effects of testosterone replacement therapy on hemostasis and some procoagulant gene expression in mice. 42 mice were randomly divided into two groups of non-orchiectomized (non-ORX) and orchiectomized (ORX) with three subgroups (n = 7) each, were subcutaneously administered with sesame oil (control), 2 and 20 mg/kg/week testosterone enanthate. Orchiectomized mice were allowed to recover for one week before treatment. On the 7th week of treatment, blood samples were collected for coagulation parameters analysis and measurement of plasma testosterone levels. Moreover, quantitative real-time PCR analysis was performed on liver samples to assess the expression of factor IX, factor X, and prothrombin genes. The results showed that supraphysiological doses (20 mg/kg) of testosterone significantly increased plasma testosterone levels in all groups, while physiological doses (2 mg/kg) only increased testosterone levels in non-ORX animals. Although testosterone administration had no effect on prothrombin time (PT) and activated partial thromboplastin time (aPTT), supraphysiological doses reduced bleeding time and clotting time. Furthermore, platelet count increased in a dose-dependent manner with testosterone enanthate treatment. The expression of coagulation factors was also decreased with supraphysiological doses of testosterone. In conclusion, testosterone had significant effects on primary hemostasis and common coagulation pathway, including increased platelet number and aggregation, decreased clotting time, and altered gene expression of coagulation factors.</div></div>","PeriodicalId":21997,"journal":{"name":"Steroids","volume":"212 ","pages":"Article 109525"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testosterone replacement has a beneficial effect on the hemostatic system by altered gene expression of coagulation factors\",\"authors\":\"Jafar Vatandoost, Amirreza Yaghoubi-Nezhad, Amir Masoud Sadr, Madjid Momeni-Moghaddam, Toktam Hajjar\",\"doi\":\"10.1016/j.steroids.2024.109525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to investigate the effects of testosterone replacement therapy on hemostasis and some procoagulant gene expression in mice. 42 mice were randomly divided into two groups of non-orchiectomized (non-ORX) and orchiectomized (ORX) with three subgroups (n = 7) each, were subcutaneously administered with sesame oil (control), 2 and 20 mg/kg/week testosterone enanthate. Orchiectomized mice were allowed to recover for one week before treatment. On the 7th week of treatment, blood samples were collected for coagulation parameters analysis and measurement of plasma testosterone levels. Moreover, quantitative real-time PCR analysis was performed on liver samples to assess the expression of factor IX, factor X, and prothrombin genes. The results showed that supraphysiological doses (20 mg/kg) of testosterone significantly increased plasma testosterone levels in all groups, while physiological doses (2 mg/kg) only increased testosterone levels in non-ORX animals. Although testosterone administration had no effect on prothrombin time (PT) and activated partial thromboplastin time (aPTT), supraphysiological doses reduced bleeding time and clotting time. Furthermore, platelet count increased in a dose-dependent manner with testosterone enanthate treatment. The expression of coagulation factors was also decreased with supraphysiological doses of testosterone. In conclusion, testosterone had significant effects on primary hemostasis and common coagulation pathway, including increased platelet number and aggregation, decreased clotting time, and altered gene expression of coagulation factors.</div></div>\",\"PeriodicalId\":21997,\"journal\":{\"name\":\"Steroids\",\"volume\":\"212 \",\"pages\":\"Article 109525\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steroids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039128X24001636\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steroids","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039128X24001636","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Testosterone replacement has a beneficial effect on the hemostatic system by altered gene expression of coagulation factors
This study aimed to investigate the effects of testosterone replacement therapy on hemostasis and some procoagulant gene expression in mice. 42 mice were randomly divided into two groups of non-orchiectomized (non-ORX) and orchiectomized (ORX) with three subgroups (n = 7) each, were subcutaneously administered with sesame oil (control), 2 and 20 mg/kg/week testosterone enanthate. Orchiectomized mice were allowed to recover for one week before treatment. On the 7th week of treatment, blood samples were collected for coagulation parameters analysis and measurement of plasma testosterone levels. Moreover, quantitative real-time PCR analysis was performed on liver samples to assess the expression of factor IX, factor X, and prothrombin genes. The results showed that supraphysiological doses (20 mg/kg) of testosterone significantly increased plasma testosterone levels in all groups, while physiological doses (2 mg/kg) only increased testosterone levels in non-ORX animals. Although testosterone administration had no effect on prothrombin time (PT) and activated partial thromboplastin time (aPTT), supraphysiological doses reduced bleeding time and clotting time. Furthermore, platelet count increased in a dose-dependent manner with testosterone enanthate treatment. The expression of coagulation factors was also decreased with supraphysiological doses of testosterone. In conclusion, testosterone had significant effects on primary hemostasis and common coagulation pathway, including increased platelet number and aggregation, decreased clotting time, and altered gene expression of coagulation factors.
期刊介绍:
STEROIDS is an international research journal devoted to studies on all chemical and biological aspects of steroidal moieties. The journal focuses on both experimental and theoretical studies on the biology, chemistry, biosynthesis, metabolism, molecular biology, physiology and pharmacology of steroids and other molecules that target or regulate steroid receptors. Manuscripts presenting clinical research related to steroids, steroid drug development, comparative endocrinology of steroid hormones, investigations on the mechanism of steroid action and steroid chemistry are all appropriate for submission for peer review. STEROIDS publishes both original research and timely reviews. For details concerning the preparation of manuscripts see Instructions to Authors, which is published in each issue of the journal.