Justin J Belair-Hickey, Ahmed Fahmy, Wenbo Zhang, Rifat S Sajid, Brenda L K Coles, Michael W Salter, Derek van der Kooy
{"title":"来自皮肤的神经嵴前体是直接重编程神经元的主要来源。","authors":"Justin J Belair-Hickey, Ahmed Fahmy, Wenbo Zhang, Rifat S Sajid, Brenda L K Coles, Michael W Salter, Derek van der Kooy","doi":"10.1016/j.stemcr.2024.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>Direct reprogramming involves the conversion of differentiated cell types without returning to an earlier developmental state. Here, we explore how heterogeneity in developmental lineage and maturity of the starting cell population contributes to direct reprogramming using the conversion of murine fibroblasts into neurons. Our hypothesis is that a single lineage of cells contributes to most reprogramming and that a rare elite precursor with intrinsic bias is the source of reprogrammed neurons. We find that nearly all reprogrammed neurons are derived from the neural crest (NC) lineage. Moreover, when rare proliferating NC precursors are selectively ablated, there is a large reduction in the number of reprogrammed neurons. Previous interpretations of this paradigm are that it demonstrates a cell fate conversion across embryonic germ layers (mesoderm to ectoderm). Our interpretation is that this is actually directed differentiation of a neural lineage stem cell in the skin that has intrinsic bias to produce neuronal progeny.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1620-1634"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural crest precursors from the skin are the primary source of directly reprogrammed neurons.\",\"authors\":\"Justin J Belair-Hickey, Ahmed Fahmy, Wenbo Zhang, Rifat S Sajid, Brenda L K Coles, Michael W Salter, Derek van der Kooy\",\"doi\":\"10.1016/j.stemcr.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Direct reprogramming involves the conversion of differentiated cell types without returning to an earlier developmental state. Here, we explore how heterogeneity in developmental lineage and maturity of the starting cell population contributes to direct reprogramming using the conversion of murine fibroblasts into neurons. Our hypothesis is that a single lineage of cells contributes to most reprogramming and that a rare elite precursor with intrinsic bias is the source of reprogrammed neurons. We find that nearly all reprogrammed neurons are derived from the neural crest (NC) lineage. Moreover, when rare proliferating NC precursors are selectively ablated, there is a large reduction in the number of reprogrammed neurons. Previous interpretations of this paradigm are that it demonstrates a cell fate conversion across embryonic germ layers (mesoderm to ectoderm). Our interpretation is that this is actually directed differentiation of a neural lineage stem cell in the skin that has intrinsic bias to produce neuronal progeny.</p>\",\"PeriodicalId\":21885,\"journal\":{\"name\":\"Stem Cell Reports\",\"volume\":\" \",\"pages\":\"1620-1634\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.stemcr.2024.10.003\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.10.003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Neural crest precursors from the skin are the primary source of directly reprogrammed neurons.
Direct reprogramming involves the conversion of differentiated cell types without returning to an earlier developmental state. Here, we explore how heterogeneity in developmental lineage and maturity of the starting cell population contributes to direct reprogramming using the conversion of murine fibroblasts into neurons. Our hypothesis is that a single lineage of cells contributes to most reprogramming and that a rare elite precursor with intrinsic bias is the source of reprogrammed neurons. We find that nearly all reprogrammed neurons are derived from the neural crest (NC) lineage. Moreover, when rare proliferating NC precursors are selectively ablated, there is a large reduction in the number of reprogrammed neurons. Previous interpretations of this paradigm are that it demonstrates a cell fate conversion across embryonic germ layers (mesoderm to ectoderm). Our interpretation is that this is actually directed differentiation of a neural lineage stem cell in the skin that has intrinsic bias to produce neuronal progeny.
期刊介绍:
Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.