合成健康数据:真正的伦理承诺与危险。

IF 2.3 3区 哲学 Q1 ETHICS Hastings Center Report Pub Date : 2024-11-02 DOI:10.1002/hast.4911
Daniel Susser, Daniel S. Schiff, Sara Gerke, Laura Y. Cabrera, I. Glenn Cohen, Megan Doerr, Jordan Harrod, Kristin Kostick-Quenet, Jasmine McNealy, Michelle N. Meyer, W. Nicholson Price II, Jennifer K. Wagner
{"title":"合成健康数据:真正的伦理承诺与危险。","authors":"Daniel Susser,&nbsp;Daniel S. Schiff,&nbsp;Sara Gerke,&nbsp;Laura Y. Cabrera,&nbsp;I. Glenn Cohen,&nbsp;Megan Doerr,&nbsp;Jordan Harrod,&nbsp;Kristin Kostick-Quenet,&nbsp;Jasmine McNealy,&nbsp;Michelle N. Meyer,&nbsp;W. Nicholson Price II,&nbsp;Jennifer K. Wagner","doi":"10.1002/hast.4911","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Researchers and practitioners are increasingly using machine-generated synthetic data as a tool for advancing health science and practice, by expanding access to health data while—potentially—mitigating privacy and related ethical concerns around data sharing. While using synthetic data in this way holds promise, we argue that it also raises significant ethical, legal, and policy concerns, including persistent privacy and security problems, accuracy and reliability issues, worries about fairness and bias, and new regulatory challenges. The virtue of synthetic data is often understood to be its detachment from the data subjects whose measurement data is used to generate it. However, we argue that addressing the ethical issues synthetic data raises might require bringing data subjects back into the picture, finding ways that researchers and data subjects can be more meaningfully engaged in the construction and evaluation of datasets and in the creation of institutional safeguards that promote responsible use.</p>\n </div>","PeriodicalId":55073,"journal":{"name":"Hastings Center Report","volume":"54 5","pages":"8-13"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hast.4911","citationCount":"0","resultStr":"{\"title\":\"Synthetic Health Data: Real Ethical Promise and Peril\",\"authors\":\"Daniel Susser,&nbsp;Daniel S. Schiff,&nbsp;Sara Gerke,&nbsp;Laura Y. Cabrera,&nbsp;I. Glenn Cohen,&nbsp;Megan Doerr,&nbsp;Jordan Harrod,&nbsp;Kristin Kostick-Quenet,&nbsp;Jasmine McNealy,&nbsp;Michelle N. Meyer,&nbsp;W. Nicholson Price II,&nbsp;Jennifer K. Wagner\",\"doi\":\"10.1002/hast.4911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Researchers and practitioners are increasingly using machine-generated synthetic data as a tool for advancing health science and practice, by expanding access to health data while—potentially—mitigating privacy and related ethical concerns around data sharing. While using synthetic data in this way holds promise, we argue that it also raises significant ethical, legal, and policy concerns, including persistent privacy and security problems, accuracy and reliability issues, worries about fairness and bias, and new regulatory challenges. The virtue of synthetic data is often understood to be its detachment from the data subjects whose measurement data is used to generate it. However, we argue that addressing the ethical issues synthetic data raises might require bringing data subjects back into the picture, finding ways that researchers and data subjects can be more meaningfully engaged in the construction and evaluation of datasets and in the creation of institutional safeguards that promote responsible use.</p>\\n </div>\",\"PeriodicalId\":55073,\"journal\":{\"name\":\"Hastings Center Report\",\"volume\":\"54 5\",\"pages\":\"8-13\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hast.4911\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hastings Center Report\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hast.4911\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ETHICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hastings Center Report","FirstCategoryId":"98","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hast.4911","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ETHICS","Score":null,"Total":0}
引用次数: 0

摘要

研究人员和从业人员越来越多地使用机器生成的合成数据作为推进健康科学和实践的工具,在扩大健康数据获取范围的同时,有可能缓解数据共享中的隐私和相关伦理问题。虽然以这种方式使用合成数据大有可为,但我们认为它也会引发重大的伦理、法律和政策问题,包括持续存在的隐私和安全问题、准确性和可靠性问题、对公平性和偏见的担忧以及新的监管挑战。合成数据的优点通常被理解为脱离了数据主体,而数据主体的测量数据正是用来生成合成数据的。然而,我们认为,要解决合成数据引发的伦理问题,可能需要让数据主体重新参与进来,找到研究人员和数据主体能够更有意义地参与数据集的构建和评估,以及建立促进负责任使用的制度保障的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthetic Health Data: Real Ethical Promise and Peril

Researchers and practitioners are increasingly using machine-generated synthetic data as a tool for advancing health science and practice, by expanding access to health data while—potentially—mitigating privacy and related ethical concerns around data sharing. While using synthetic data in this way holds promise, we argue that it also raises significant ethical, legal, and policy concerns, including persistent privacy and security problems, accuracy and reliability issues, worries about fairness and bias, and new regulatory challenges. The virtue of synthetic data is often understood to be its detachment from the data subjects whose measurement data is used to generate it. However, we argue that addressing the ethical issues synthetic data raises might require bringing data subjects back into the picture, finding ways that researchers and data subjects can be more meaningfully engaged in the construction and evaluation of datasets and in the creation of institutional safeguards that promote responsible use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hastings Center Report
Hastings Center Report 医学-卫生保健
CiteScore
3.50
自引率
3.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Hastings Center Report explores ethical, legal, and social issues in medicine, health care, public health, and the life sciences. Six issues per year offer articles, essays, case studies of bioethical problems, columns on law and policy, caregivers’ stories, peer-reviewed scholarly articles, and book reviews. Authors come from an assortment of professions and academic disciplines and express a range of perspectives and political opinions. The Report’s readership includes physicians, nurses, scholars, administrators, social workers, health lawyers, and others.
期刊最新文献
Adam Omelianchuk, Alexander Morgan Capron, Lainie Friedman Ross, Arthur R. Derse, James L. Bernat, and David Magnus reply: Gender, Pediatric Care, and Evidence Johan C. Bester replies: Language Matters: The Semantics and Politics of “Assisted Dying” On Normothermic Regional Perfusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1