薏苡仁提取物对人视网膜色素上皮细胞炎症和纤维生成基因表达的影响

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biomedicine & Pharmacotherapy Pub Date : 2024-11-01 DOI:10.1016/j.biopha.2024.117646
Zahra Gharegezloo , Zahra Rezvani , Fatemeh Sanie-Jahromi , Foroogh Namjoyan
{"title":"薏苡仁提取物对人视网膜色素上皮细胞炎症和纤维生成基因表达的影响","authors":"Zahra Gharegezloo ,&nbsp;Zahra Rezvani ,&nbsp;Fatemeh Sanie-Jahromi ,&nbsp;Foroogh Namjoyan","doi":"10.1016/j.biopha.2024.117646","DOIUrl":null,"url":null,"abstract":"<div><div>Proliferative vitreoretinopathy (PVR) is a vision-threatening condition associated with retinal-detachment (RD), primarily caused by fibrocellular scar membrane formation. This study investigates the therapeutic potential of adlay seed extract fractions in mitigating PVR-associated pathways, focusing on oxidative stress, proliferation, inflammation, and fibrogenesis in retinal pigment epithelial (RPE) cells. Adlay seed extract fractions (methanolic: MeOH and residual: Res) were obtained through solvent extraction and characterized for carbohydrate, protein, flavonoid content, and antioxidant activity. RPE cells were cultured, and their viability in response to adlay fractions was assessed using the MTT assay. Gene expression analysis of IL-1β, IL-6, LIF, TGF-β, Snail and α-SMA genes was conducted via real-time PCR after treatment with adlay fractions. The Res fraction exhibited higher levels of protein, carbohydrate, flavonoids, and phenols compared to the MeOH fraction, along with significantly enhanced antioxidant activity. Both fractions showed inhibitory effects on RPE cell viability, with the Res fraction demonstrating a more pronounced impact. Gene expression analysis revealed a significant decrease in IL-6 and TGF-β expression with the MeOH fraction treatment, while the Res fraction led to decreased expression of IL-6, LIF, TGF-β, Snail and α-SMA, indicating a more comprehensive modulation of PVR-associated pathways. This study highlights the potential therapeutic benefits of adlay seed extract fractions in mitigating PVR-associated pathways in RPE cells. The Res fraction, particularly rich in bioactive compounds and exhibiting potent antioxidant activity, shows promise in attenuating oxidative stress, proliferation, inflammation, and fibrogenesis, critical processes in PVR development. These findings underscore the potential of adlay seed extracts as a novel therapeutic strategy for PVR warranting further investigation and clinical validation.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"181 ","pages":"Article 117646"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of Coix lachrymal L. seed extract on the expression of inflammation and fibrogenesis genes in human retinal pigment epithelial cells\",\"authors\":\"Zahra Gharegezloo ,&nbsp;Zahra Rezvani ,&nbsp;Fatemeh Sanie-Jahromi ,&nbsp;Foroogh Namjoyan\",\"doi\":\"10.1016/j.biopha.2024.117646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proliferative vitreoretinopathy (PVR) is a vision-threatening condition associated with retinal-detachment (RD), primarily caused by fibrocellular scar membrane formation. This study investigates the therapeutic potential of adlay seed extract fractions in mitigating PVR-associated pathways, focusing on oxidative stress, proliferation, inflammation, and fibrogenesis in retinal pigment epithelial (RPE) cells. Adlay seed extract fractions (methanolic: MeOH and residual: Res) were obtained through solvent extraction and characterized for carbohydrate, protein, flavonoid content, and antioxidant activity. RPE cells were cultured, and their viability in response to adlay fractions was assessed using the MTT assay. Gene expression analysis of IL-1β, IL-6, LIF, TGF-β, Snail and α-SMA genes was conducted via real-time PCR after treatment with adlay fractions. The Res fraction exhibited higher levels of protein, carbohydrate, flavonoids, and phenols compared to the MeOH fraction, along with significantly enhanced antioxidant activity. Both fractions showed inhibitory effects on RPE cell viability, with the Res fraction demonstrating a more pronounced impact. Gene expression analysis revealed a significant decrease in IL-6 and TGF-β expression with the MeOH fraction treatment, while the Res fraction led to decreased expression of IL-6, LIF, TGF-β, Snail and α-SMA, indicating a more comprehensive modulation of PVR-associated pathways. This study highlights the potential therapeutic benefits of adlay seed extract fractions in mitigating PVR-associated pathways in RPE cells. The Res fraction, particularly rich in bioactive compounds and exhibiting potent antioxidant activity, shows promise in attenuating oxidative stress, proliferation, inflammation, and fibrogenesis, critical processes in PVR development. These findings underscore the potential of adlay seed extracts as a novel therapeutic strategy for PVR warranting further investigation and clinical validation.</div></div>\",\"PeriodicalId\":8966,\"journal\":{\"name\":\"Biomedicine & Pharmacotherapy\",\"volume\":\"181 \",\"pages\":\"Article 117646\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedicine & Pharmacotherapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0753332224015324\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332224015324","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

增殖性玻璃体视网膜病变(PVR)是一种与视网膜脱落(RD)相关的威胁视力的疾病,主要由纤维细胞瘢痕膜形成引起。本研究探讨了阿德雷籽提取物馏分在减轻与视网膜色素上皮细胞(RPE)氧化应激、增殖、炎症和纤维形成相关的途径方面的治疗潜力。通过溶剂萃取获得阿德雷种子提取物馏分(甲醇:MeOH 和残留物:Res),并对其碳水化合物、蛋白质、类黄酮含量和抗氧化活性进行表征。培养 RPE 细胞,用 MTT 法评估它们对阿德雷萃取物的活力。用adlay馏分处理后,通过实时PCR对IL-1β、IL-6、LIF、TGF-β、Snail和α-SMA基因进行了基因表达分析。与 MeOH 萃取物相比,Res 萃取物中蛋白质、碳水化合物、黄酮类化合物和酚类物质的含量更高,抗氧化活性也明显增强。两种馏分都对 RPE 细胞的活力有抑制作用,其中 Res 馏分的影响更为明显。基因表达分析表明,MeOH馏分处理后,IL-6和TGF-β的表达明显下降,而Res馏分则导致IL-6、LIF、TGF-β、Snail和α-SMA的表达下降,表明对PVR相关通路的调节更为全面。这项研究强调了阿德雷种子提取物馏分在减轻 RPE 细胞中 PVR 相关通路方面的潜在治疗功效。Res萃取物富含生物活性化合物,具有很强的抗氧化活性,有望减轻氧化应激、增殖、炎症和纤维增生,这些都是PVR发生的关键过程。这些发现强调了阿德雷种子提取物作为一种新型 PVR 治疗策略的潜力,值得进一步研究和临床验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of Coix lachrymal L. seed extract on the expression of inflammation and fibrogenesis genes in human retinal pigment epithelial cells
Proliferative vitreoretinopathy (PVR) is a vision-threatening condition associated with retinal-detachment (RD), primarily caused by fibrocellular scar membrane formation. This study investigates the therapeutic potential of adlay seed extract fractions in mitigating PVR-associated pathways, focusing on oxidative stress, proliferation, inflammation, and fibrogenesis in retinal pigment epithelial (RPE) cells. Adlay seed extract fractions (methanolic: MeOH and residual: Res) were obtained through solvent extraction and characterized for carbohydrate, protein, flavonoid content, and antioxidant activity. RPE cells were cultured, and their viability in response to adlay fractions was assessed using the MTT assay. Gene expression analysis of IL-1β, IL-6, LIF, TGF-β, Snail and α-SMA genes was conducted via real-time PCR after treatment with adlay fractions. The Res fraction exhibited higher levels of protein, carbohydrate, flavonoids, and phenols compared to the MeOH fraction, along with significantly enhanced antioxidant activity. Both fractions showed inhibitory effects on RPE cell viability, with the Res fraction demonstrating a more pronounced impact. Gene expression analysis revealed a significant decrease in IL-6 and TGF-β expression with the MeOH fraction treatment, while the Res fraction led to decreased expression of IL-6, LIF, TGF-β, Snail and α-SMA, indicating a more comprehensive modulation of PVR-associated pathways. This study highlights the potential therapeutic benefits of adlay seed extract fractions in mitigating PVR-associated pathways in RPE cells. The Res fraction, particularly rich in bioactive compounds and exhibiting potent antioxidant activity, shows promise in attenuating oxidative stress, proliferation, inflammation, and fibrogenesis, critical processes in PVR development. These findings underscore the potential of adlay seed extracts as a novel therapeutic strategy for PVR warranting further investigation and clinical validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
期刊最新文献
Enhancing lung cancer growth inhibition with calcium ions: Role of mid- and high-frequency electric field pulses Monosaccharides improve symptoms of an animal model for type III galactosemia, through the activation of the insulin pathway The possible role of hypoxia-induced exosomes on the fibroblast metabolism in idiopathic pulmonary fibrosis Inhibition of breast cancer growth with AN-329, a novel Hsp110 inhibitor, by inactivating p-STAT3/c-Myc axis Synthesis, characterisation, and anti-tumour activity of nano-immuno-conjugates for enhanced photodynamic therapy of oesophageal cancer stem cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1