Chuanyu Li , Haotian Li , Xingchen Dong , Xiangwen Zhong , Haozhou Cui , Dezan Ji , Landi He , Guoyang Liu , Weidong Zhou
{"title":"CNN-Informer:用于长期脑电图癫痫发作检测的混合深度学习模型。","authors":"Chuanyu Li , Haotian Li , Xingchen Dong , Xiangwen Zhong , Haozhou Cui , Dezan Ji , Landi He , Guoyang Liu , Weidong Zhou","doi":"10.1016/j.neunet.2024.106855","DOIUrl":null,"url":null,"abstract":"<div><div>Timely detecting epileptic seizures can significantly reduce accidental injuries of epilepsy patients and offer a novel intervention approach to improve their quality of life. Investigation on seizure detection based on deep learning models has achieved great success. However, there still remain challenging issues, such as the high computational complexity of the models and overfitting caused by the scarce availability of ictal electroencephalogram (EEG) signals for training. Therefore, we propose a novel end-to-end automatic seizure detection model named CNN-Informer, which leverages the capability of Convolutional Neural Network (CNN) to extract EEG local features of multi-channel EEGs, and the low computational complexity and memory usage ability of the Informer to capture the long-range dependencies. In view of the existence of various artifacts in long-term EEGs, we filter those raw EEGs using Discrete Wavelet Transform (DWT) before feeding them into the proposed CNN-Informer model for feature extraction and classification. Post-processing operations are further employed to achieve the final detection results. Our method is extensively evaluated on the CHB-MIT dataset and SH-SDU dataset with both segment-based and event-based criteria. The experimental outcomes demonstrate the superiority of the proposed CNN-Informer model and its strong generalization ability across two EEG datasets. In addition, the lightweight architecture of CNN-Informer makes it suitable for real-time implementation.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106855"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNN-Informer: A hybrid deep learning model for seizure detection on long-term EEG\",\"authors\":\"Chuanyu Li , Haotian Li , Xingchen Dong , Xiangwen Zhong , Haozhou Cui , Dezan Ji , Landi He , Guoyang Liu , Weidong Zhou\",\"doi\":\"10.1016/j.neunet.2024.106855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Timely detecting epileptic seizures can significantly reduce accidental injuries of epilepsy patients and offer a novel intervention approach to improve their quality of life. Investigation on seizure detection based on deep learning models has achieved great success. However, there still remain challenging issues, such as the high computational complexity of the models and overfitting caused by the scarce availability of ictal electroencephalogram (EEG) signals for training. Therefore, we propose a novel end-to-end automatic seizure detection model named CNN-Informer, which leverages the capability of Convolutional Neural Network (CNN) to extract EEG local features of multi-channel EEGs, and the low computational complexity and memory usage ability of the Informer to capture the long-range dependencies. In view of the existence of various artifacts in long-term EEGs, we filter those raw EEGs using Discrete Wavelet Transform (DWT) before feeding them into the proposed CNN-Informer model for feature extraction and classification. Post-processing operations are further employed to achieve the final detection results. Our method is extensively evaluated on the CHB-MIT dataset and SH-SDU dataset with both segment-based and event-based criteria. The experimental outcomes demonstrate the superiority of the proposed CNN-Informer model and its strong generalization ability across two EEG datasets. In addition, the lightweight architecture of CNN-Informer makes it suitable for real-time implementation.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"181 \",\"pages\":\"Article 106855\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024007792\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024007792","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
CNN-Informer: A hybrid deep learning model for seizure detection on long-term EEG
Timely detecting epileptic seizures can significantly reduce accidental injuries of epilepsy patients and offer a novel intervention approach to improve their quality of life. Investigation on seizure detection based on deep learning models has achieved great success. However, there still remain challenging issues, such as the high computational complexity of the models and overfitting caused by the scarce availability of ictal electroencephalogram (EEG) signals for training. Therefore, we propose a novel end-to-end automatic seizure detection model named CNN-Informer, which leverages the capability of Convolutional Neural Network (CNN) to extract EEG local features of multi-channel EEGs, and the low computational complexity and memory usage ability of the Informer to capture the long-range dependencies. In view of the existence of various artifacts in long-term EEGs, we filter those raw EEGs using Discrete Wavelet Transform (DWT) before feeding them into the proposed CNN-Informer model for feature extraction and classification. Post-processing operations are further employed to achieve the final detection results. Our method is extensively evaluated on the CHB-MIT dataset and SH-SDU dataset with both segment-based and event-based criteria. The experimental outcomes demonstrate the superiority of the proposed CNN-Informer model and its strong generalization ability across two EEG datasets. In addition, the lightweight architecture of CNN-Informer makes it suitable for real-time implementation.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.