蒙特卡罗模拟预测伊朗东北部巴格哈克放射性的可能性

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Earth Sciences Pub Date : 2024-11-01 DOI:10.1007/s12665-024-11940-4
Zahra Varmazyari, Seyyed Saeed Ghannadpour
{"title":"蒙特卡罗模拟预测伊朗东北部巴格哈克放射性的可能性","authors":"Zahra Varmazyari,&nbsp;Seyyed Saeed Ghannadpour","doi":"10.1007/s12665-024-11940-4","DOIUrl":null,"url":null,"abstract":"<div><p>Uranium deposits are found in various geological environments; therefore, these exist in almost all geological phases: in high degree of metamorphic, metasomatic, Metamorphism, Surficial and Volcanic to Sedimentary perimeters. In this study, the amount of uranium in the Baghak mine (as a case study) was predicted using piecewise regression and Monte Carlo simulation at a 90% confidence level. To this end, 151 geochemical samples from the study area were analyzed, with rare earth elements, thorium, and yttrium selected as independent parameters due to their highest correlation with uranium. An equation was derived for estimating uranium levels, showing a high correlation (86%) with actual data. Based on the final model, 2,200 random data points for uranium were generated, with the mean differing by only 0.1 (logarithmic unit of concentration) from actual values. This indicates the model’s high accuracy in simulating real values. The simulated values closely matched actual values based on the density function, confirming the model’s validity. In this area, the confidence interval for uranium is from 1.8 to 2.6 based on logarithmic calculations. Finally, the independent parameters were prioritized based on their impact on predicting uranium levels. This research could be considered a practical tool for assessing and predicting uranium concentrations in various regions and could aid in improving mineral resource management.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 21","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Possibility of Monte Carlo simulation for predicting radioactivity in the Baghak, NE Iran\",\"authors\":\"Zahra Varmazyari,&nbsp;Seyyed Saeed Ghannadpour\",\"doi\":\"10.1007/s12665-024-11940-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Uranium deposits are found in various geological environments; therefore, these exist in almost all geological phases: in high degree of metamorphic, metasomatic, Metamorphism, Surficial and Volcanic to Sedimentary perimeters. In this study, the amount of uranium in the Baghak mine (as a case study) was predicted using piecewise regression and Monte Carlo simulation at a 90% confidence level. To this end, 151 geochemical samples from the study area were analyzed, with rare earth elements, thorium, and yttrium selected as independent parameters due to their highest correlation with uranium. An equation was derived for estimating uranium levels, showing a high correlation (86%) with actual data. Based on the final model, 2,200 random data points for uranium were generated, with the mean differing by only 0.1 (logarithmic unit of concentration) from actual values. This indicates the model’s high accuracy in simulating real values. The simulated values closely matched actual values based on the density function, confirming the model’s validity. In this area, the confidence interval for uranium is from 1.8 to 2.6 based on logarithmic calculations. Finally, the independent parameters were prioritized based on their impact on predicting uranium levels. This research could be considered a practical tool for assessing and predicting uranium concentrations in various regions and could aid in improving mineral resource management.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"83 21\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-024-11940-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11940-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铀矿床存在于各种地质环境中,因此几乎存在于所有地质阶段:高度变质、变质、变质、表层和火山至沉积围岩。在本研究中,采用片断回归和蒙特卡罗模拟法,在 90% 的置信水平上预测了巴格哈克矿区(作为案例研究)的铀含量。为此,对研究区域的 151 个地球化学样本进行了分析,稀土元素、钍和钇因与铀的相关性最高而被选为独立参数。得出了一个估算铀含量的等式,显示出与实际数据的高度相关性(86%)。根据最终模型,生成了 2,200 个铀的随机数据点,平均值与实际值仅相差 0.1(浓度的对数单位)。这表明该模型模拟实际值的准确性很高。根据密度函数,模拟值与实际值非常吻合,证实了模型的有效性。在这一区域,根据对数计算,铀的置信区间为 1.8 至 2.6。最后,根据独立参数对预测铀含量的影响,对其进行了优先排序。这项研究可被视为评估和预测不同地区铀浓度的实用工具,有助于改善矿产资源管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Possibility of Monte Carlo simulation for predicting radioactivity in the Baghak, NE Iran

Uranium deposits are found in various geological environments; therefore, these exist in almost all geological phases: in high degree of metamorphic, metasomatic, Metamorphism, Surficial and Volcanic to Sedimentary perimeters. In this study, the amount of uranium in the Baghak mine (as a case study) was predicted using piecewise regression and Monte Carlo simulation at a 90% confidence level. To this end, 151 geochemical samples from the study area were analyzed, with rare earth elements, thorium, and yttrium selected as independent parameters due to their highest correlation with uranium. An equation was derived for estimating uranium levels, showing a high correlation (86%) with actual data. Based on the final model, 2,200 random data points for uranium were generated, with the mean differing by only 0.1 (logarithmic unit of concentration) from actual values. This indicates the model’s high accuracy in simulating real values. The simulated values closely matched actual values based on the density function, confirming the model’s validity. In this area, the confidence interval for uranium is from 1.8 to 2.6 based on logarithmic calculations. Finally, the independent parameters were prioritized based on their impact on predicting uranium levels. This research could be considered a practical tool for assessing and predicting uranium concentrations in various regions and could aid in improving mineral resource management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
期刊最新文献
Study on the influence of pipe jacking construction on existing subway tunnels Study on progressive damage and deformation law of coal body around borehole under different moisture states Hydrochemical stratigraphic analysis of the filling of the Meirama open pit mine II: parameters and elements Detection and comprehensive treatment for giant karst caves under the tunnel floor: a case study in Guangxi, China Mineralogical compositions and distributions of trace and rare earth elements in Eocene carbonaceous sediments of Western India: implications for paleoenvironment during peat accumulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1