洪水易发性评估中的频率和持续时间整合:印度泰米尔纳德邦东海岸的新方法

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Earth Sciences Pub Date : 2024-11-01 DOI:10.1007/s12665-024-11938-y
Sakthi Kiran Duraisamy Rajasekaran, Selvakumar Radhakrishnan, Lameck Fiwa
{"title":"洪水易发性评估中的频率和持续时间整合:印度泰米尔纳德邦东海岸的新方法","authors":"Sakthi Kiran Duraisamy Rajasekaran,&nbsp;Selvakumar Radhakrishnan,&nbsp;Lameck Fiwa","doi":"10.1007/s12665-024-11938-y","DOIUrl":null,"url":null,"abstract":"<div><p>A flood susceptibility assessment is crucial for identifying areas that are susceptible to flooding. This task usually uses models, but prior flood susceptibility assessment models focused on the frequency or duration of floods, not both. Integrating the frequency and duration of floods in susceptibility assessment could provide a more accurate picture of flood susceptibility. This study aimed to utilise and assess a novel integrated model that considers the frequency and duration of floods to categorise vulnerability/susceptibility zones. This study focuses on the multi-hazard zone between Cuddalore and Sirkazhi on the east coast of Tamil Nadu, India. Sentinel-1 A and RISAT-1 A Synthetic Aperture Radar (SAR) images were analysed using the Classification and Regression Tree (CART) classifier. Eight SAR images were used to study the persistence and temporal evolution of flooding over 49 days in 2015, along with multi-temporal datasets for 2015, 2018, and 2019. The classification of flood-susceptibility zones based on the frequency and duration of flooding yielded an accuracy of 0.87, whereas the integrated model scored 0.96 in all matrices. The hybrid integrated analysis provided a comprehensive understanding of the area’s flooding system, identifying the southern part of the study area as the most susceptible. The proposed model recommends a frequency-duration-based approach to demarcate flood susceptibility zones and potentially improve flood susceptibility assessments and management strategies.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 21","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating frequency and duration in flood susceptibility assessment: a novel approach for the east coast of Tamil Nadu, India\",\"authors\":\"Sakthi Kiran Duraisamy Rajasekaran,&nbsp;Selvakumar Radhakrishnan,&nbsp;Lameck Fiwa\",\"doi\":\"10.1007/s12665-024-11938-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A flood susceptibility assessment is crucial for identifying areas that are susceptible to flooding. This task usually uses models, but prior flood susceptibility assessment models focused on the frequency or duration of floods, not both. Integrating the frequency and duration of floods in susceptibility assessment could provide a more accurate picture of flood susceptibility. This study aimed to utilise and assess a novel integrated model that considers the frequency and duration of floods to categorise vulnerability/susceptibility zones. This study focuses on the multi-hazard zone between Cuddalore and Sirkazhi on the east coast of Tamil Nadu, India. Sentinel-1 A and RISAT-1 A Synthetic Aperture Radar (SAR) images were analysed using the Classification and Regression Tree (CART) classifier. Eight SAR images were used to study the persistence and temporal evolution of flooding over 49 days in 2015, along with multi-temporal datasets for 2015, 2018, and 2019. The classification of flood-susceptibility zones based on the frequency and duration of flooding yielded an accuracy of 0.87, whereas the integrated model scored 0.96 in all matrices. The hybrid integrated analysis provided a comprehensive understanding of the area’s flooding system, identifying the southern part of the study area as the most susceptible. The proposed model recommends a frequency-duration-based approach to demarcate flood susceptibility zones and potentially improve flood susceptibility assessments and management strategies.</p></div>\",\"PeriodicalId\":542,\"journal\":{\"name\":\"Environmental Earth Sciences\",\"volume\":\"83 21\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Earth Sciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12665-024-11938-y\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11938-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

洪水易发性评估对于确定易受洪水影响的地区至关重要。这项工作通常使用模型,但之前的洪水易发性评估模型侧重于洪水的频率或持续时间,而不是两者。将洪水频率和持续时间整合到洪水易感性评估中,可以更准确地反映洪水易感性。本研究旨在利用和评估一种新的综合模型,该模型考虑了洪水的频率和持续时间,以划分脆弱性/易感性区域。本研究的重点是印度泰米尔纳德邦东海岸 Cuddalore 和 Sirkazhi 之间的多灾害区。使用分类和回归树 (CART) 分类器分析了 Sentinel-1 A 和 RISAT-1 A 合成孔径雷达 (SAR) 图像。八幅合成孔径雷达图像用于研究 2015 年 49 天内洪水的持续性和时间演变,以及 2015 年、2018 年和 2019 年的多时空数据集。根据洪水发生频率和持续时间对洪水易感区进行分类的准确率为 0.87,而综合模型在所有矩阵中的得分均为 0.96。混合综合分析提供了对该地区洪水系统的全面了解,确定研究区南部为最易受洪水影响的地区。拟议的模型建议采用基于频率-持续时间的方法来划分洪水易发区,并有可能改进洪水易发性评估和管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating frequency and duration in flood susceptibility assessment: a novel approach for the east coast of Tamil Nadu, India

A flood susceptibility assessment is crucial for identifying areas that are susceptible to flooding. This task usually uses models, but prior flood susceptibility assessment models focused on the frequency or duration of floods, not both. Integrating the frequency and duration of floods in susceptibility assessment could provide a more accurate picture of flood susceptibility. This study aimed to utilise and assess a novel integrated model that considers the frequency and duration of floods to categorise vulnerability/susceptibility zones. This study focuses on the multi-hazard zone between Cuddalore and Sirkazhi on the east coast of Tamil Nadu, India. Sentinel-1 A and RISAT-1 A Synthetic Aperture Radar (SAR) images were analysed using the Classification and Regression Tree (CART) classifier. Eight SAR images were used to study the persistence and temporal evolution of flooding over 49 days in 2015, along with multi-temporal datasets for 2015, 2018, and 2019. The classification of flood-susceptibility zones based on the frequency and duration of flooding yielded an accuracy of 0.87, whereas the integrated model scored 0.96 in all matrices. The hybrid integrated analysis provided a comprehensive understanding of the area’s flooding system, identifying the southern part of the study area as the most susceptible. The proposed model recommends a frequency-duration-based approach to demarcate flood susceptibility zones and potentially improve flood susceptibility assessments and management strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
期刊最新文献
Study on the influence of pipe jacking construction on existing subway tunnels Study on progressive damage and deformation law of coal body around borehole under different moisture states Hydrochemical stratigraphic analysis of the filling of the Meirama open pit mine II: parameters and elements Detection and comprehensive treatment for giant karst caves under the tunnel floor: a case study in Guangxi, China Mineralogical compositions and distributions of trace and rare earth elements in Eocene carbonaceous sediments of Western India: implications for paleoenvironment during peat accumulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1