Tao Zhou, Qi Ye, Wenhan Luo, Haizhou Ran, Zhiguo Shi, Jiming Chen
{"title":"APPTracker+:在低帧速率多目标跟踪中处理遮挡的位移不确定性","authors":"Tao Zhou, Qi Ye, Wenhan Luo, Haizhou Ran, Zhiguo Shi, Jiming Chen","doi":"10.1007/s11263-024-02237-x","DOIUrl":null,"url":null,"abstract":"<p>Multi-object tracking (MOT) in the scenario of low-frame-rate videos is a promising solution to better meet the computing, storage, and transmitting bandwidth resource constraints of edge devices. Tracking with a low frame rate poses particular challenges in the association stage as objects in two successive frames typically exhibit much quicker variations in locations, velocities, appearances, and visibilities than those in normal frame rates. In this paper, we observe severe performance degeneration of many existing association strategies caused by such variations. Though optical-flow-based methods like CenterTrack can handle the large displacement to some extent due to their large receptive field, the temporally local nature makes them fail to give reliable displacement estimations of objects that newly appear in the current frame (i.e., not visible in the previous frame). To overcome the local nature of optical-flow-based methods, we propose an online tracking method by extending the CenterTrack architecture with a new head, named APP, to recognize unreliable displacement estimations. Further, to capture the fine-grained and private unreliability of each displacement estimation, we extend the binary APP predictions to displacement uncertainties. To this end, we reformulate the displacement estimation task via Bayesian deep learning tools. With APP predictions, we propose to conduct association in a multi-stage manner where vision cues or historical motion cues are leveraged in the corresponding stage. By rethinking the commonly used bipartite matching algorithms, we equip the proposed multi-stage association policy with a hybrid matching strategy conditioned on displacement uncertainties. Our method shows robustness in preserving identities in low-frame-rate video sequences. Experimental results on public datasets in various low-frame-rate settings demonstrate the advantages of the proposed method.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPTracker+: Displacement Uncertainty for Occlusion Handling in Low-Frame-Rate Multiple Object Tracking\",\"authors\":\"Tao Zhou, Qi Ye, Wenhan Luo, Haizhou Ran, Zhiguo Shi, Jiming Chen\",\"doi\":\"10.1007/s11263-024-02237-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-object tracking (MOT) in the scenario of low-frame-rate videos is a promising solution to better meet the computing, storage, and transmitting bandwidth resource constraints of edge devices. Tracking with a low frame rate poses particular challenges in the association stage as objects in two successive frames typically exhibit much quicker variations in locations, velocities, appearances, and visibilities than those in normal frame rates. In this paper, we observe severe performance degeneration of many existing association strategies caused by such variations. Though optical-flow-based methods like CenterTrack can handle the large displacement to some extent due to their large receptive field, the temporally local nature makes them fail to give reliable displacement estimations of objects that newly appear in the current frame (i.e., not visible in the previous frame). To overcome the local nature of optical-flow-based methods, we propose an online tracking method by extending the CenterTrack architecture with a new head, named APP, to recognize unreliable displacement estimations. Further, to capture the fine-grained and private unreliability of each displacement estimation, we extend the binary APP predictions to displacement uncertainties. To this end, we reformulate the displacement estimation task via Bayesian deep learning tools. With APP predictions, we propose to conduct association in a multi-stage manner where vision cues or historical motion cues are leveraged in the corresponding stage. By rethinking the commonly used bipartite matching algorithms, we equip the proposed multi-stage association policy with a hybrid matching strategy conditioned on displacement uncertainties. Our method shows robustness in preserving identities in low-frame-rate video sequences. Experimental results on public datasets in various low-frame-rate settings demonstrate the advantages of the proposed method.\\n</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-024-02237-x\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02237-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
APPTracker+: Displacement Uncertainty for Occlusion Handling in Low-Frame-Rate Multiple Object Tracking
Multi-object tracking (MOT) in the scenario of low-frame-rate videos is a promising solution to better meet the computing, storage, and transmitting bandwidth resource constraints of edge devices. Tracking with a low frame rate poses particular challenges in the association stage as objects in two successive frames typically exhibit much quicker variations in locations, velocities, appearances, and visibilities than those in normal frame rates. In this paper, we observe severe performance degeneration of many existing association strategies caused by such variations. Though optical-flow-based methods like CenterTrack can handle the large displacement to some extent due to their large receptive field, the temporally local nature makes them fail to give reliable displacement estimations of objects that newly appear in the current frame (i.e., not visible in the previous frame). To overcome the local nature of optical-flow-based methods, we propose an online tracking method by extending the CenterTrack architecture with a new head, named APP, to recognize unreliable displacement estimations. Further, to capture the fine-grained and private unreliability of each displacement estimation, we extend the binary APP predictions to displacement uncertainties. To this end, we reformulate the displacement estimation task via Bayesian deep learning tools. With APP predictions, we propose to conduct association in a multi-stage manner where vision cues or historical motion cues are leveraged in the corresponding stage. By rethinking the commonly used bipartite matching algorithms, we equip the proposed multi-stage association policy with a hybrid matching strategy conditioned on displacement uncertainties. Our method shows robustness in preserving identities in low-frame-rate video sequences. Experimental results on public datasets in various low-frame-rate settings demonstrate the advantages of the proposed method.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.