揭开单颗粒多参数传感的神秘面纱:通过上转换偏振光谱解耦温度和粘度读数。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-11-03 DOI:10.1002/smtd.202400718
Elisa Ortiz-Rivero, Katarzyna Prorok, Riccardo Marin, Artur Bednarkiewicz, Daniel Jaque, Patricia Haro-González
{"title":"揭开单颗粒多参数传感的神秘面纱:通过上转换偏振光谱解耦温度和粘度读数。","authors":"Elisa Ortiz-Rivero, Katarzyna Prorok, Riccardo Marin, Artur Bednarkiewicz, Daniel Jaque, Patricia Haro-González","doi":"10.1002/smtd.202400718","DOIUrl":null,"url":null,"abstract":"<p><p>Upconverting particles (UCPs), renowned for their capability to convert infrared to visible light, serve as invaluable imaging probes. Furthermore, their responsiveness to diverse external stimuli holds promise for leveraging UCPs as remote multiparametric sensors, capable of characterizing medium properties in a single assessment. However, the utility of UCPs in multiparametric sensing is impeded by crosstalk, wherein distinct external stimuli induce identical alterations in UCP luminescence, hindering accurate interpretation, and yielding erroneous outputs. Overcoming crosstalk requires alternative strategies in upconverting luminescence analysis. In this study, it is shown how a single spinning NaYF<sub>4</sub>:Er<sup>3+</sup>, Yb<sup>3+</sup> upconverting particle enables simultaneous and independent readings of temperature and viscosity. This is achieved by decoupling thermal and rehological measurements-employing the luminescence of thermally-coupled energy levels of Er<sup>3+</sup> ions for thermal sensing, while leveraging the polarization of luminescence from non-thermally coupled levels of Er<sup>3+</sup> ions to determine viscosity. Through simple proof-of-concept experiments, the study validates the capability of a single spinning UCP to perform unbiased, simultaneous temperature, and viscosity sensing, thereby opening new avenues for advanced sensing in microenvironments.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Single-Particle Multiparametric Sensing: Decoupling Temperature and Viscosity Readouts through Upconverting Polarized Spectroscopy.\",\"authors\":\"Elisa Ortiz-Rivero, Katarzyna Prorok, Riccardo Marin, Artur Bednarkiewicz, Daniel Jaque, Patricia Haro-González\",\"doi\":\"10.1002/smtd.202400718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Upconverting particles (UCPs), renowned for their capability to convert infrared to visible light, serve as invaluable imaging probes. Furthermore, their responsiveness to diverse external stimuli holds promise for leveraging UCPs as remote multiparametric sensors, capable of characterizing medium properties in a single assessment. However, the utility of UCPs in multiparametric sensing is impeded by crosstalk, wherein distinct external stimuli induce identical alterations in UCP luminescence, hindering accurate interpretation, and yielding erroneous outputs. Overcoming crosstalk requires alternative strategies in upconverting luminescence analysis. In this study, it is shown how a single spinning NaYF<sub>4</sub>:Er<sup>3+</sup>, Yb<sup>3+</sup> upconverting particle enables simultaneous and independent readings of temperature and viscosity. This is achieved by decoupling thermal and rehological measurements-employing the luminescence of thermally-coupled energy levels of Er<sup>3+</sup> ions for thermal sensing, while leveraging the polarization of luminescence from non-thermally coupled levels of Er<sup>3+</sup> ions to determine viscosity. Through simple proof-of-concept experiments, the study validates the capability of a single spinning UCP to perform unbiased, simultaneous temperature, and viscosity sensing, thereby opening new avenues for advanced sensing in microenvironments.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202400718\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400718","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

上转换粒子(UCPs)因能将红外光转换为可见光而闻名,是一种宝贵的成像探针。此外,UCP 对各种外部刺激的反应能力也为利用 UCP 作为远程多参数传感器带来了希望,这种传感器能够在一次评估中确定介质特性的特征。然而,UCP 在多参数传感中的应用受到了串扰的阻碍,不同的外部刺激会引起 UCP 发光发生相同的变化,从而阻碍了准确的解释,并产生错误的输出。克服串扰需要在上转换发光分析中采用其他策略。本研究展示了单个旋转 NaYF4:Er3+, Yb3+ 上转换粒子如何同时独立读取温度和粘度。这是通过解耦热测量和热学测量实现的--利用 Er3+ 离子热耦合能级的发光进行热感应,同时利用 Er3+ 离子非热耦合能级的发光偏振来确定粘度。通过简单的概念验证实验,该研究验证了单个旋转 UCP 同时进行无偏温度和粘度传感的能力,从而为微环境中的高级传感开辟了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking Single-Particle Multiparametric Sensing: Decoupling Temperature and Viscosity Readouts through Upconverting Polarized Spectroscopy.

Upconverting particles (UCPs), renowned for their capability to convert infrared to visible light, serve as invaluable imaging probes. Furthermore, their responsiveness to diverse external stimuli holds promise for leveraging UCPs as remote multiparametric sensors, capable of characterizing medium properties in a single assessment. However, the utility of UCPs in multiparametric sensing is impeded by crosstalk, wherein distinct external stimuli induce identical alterations in UCP luminescence, hindering accurate interpretation, and yielding erroneous outputs. Overcoming crosstalk requires alternative strategies in upconverting luminescence analysis. In this study, it is shown how a single spinning NaYF4:Er3+, Yb3+ upconverting particle enables simultaneous and independent readings of temperature and viscosity. This is achieved by decoupling thermal and rehological measurements-employing the luminescence of thermally-coupled energy levels of Er3+ ions for thermal sensing, while leveraging the polarization of luminescence from non-thermally coupled levels of Er3+ ions to determine viscosity. Through simple proof-of-concept experiments, the study validates the capability of a single spinning UCP to perform unbiased, simultaneous temperature, and viscosity sensing, thereby opening new avenues for advanced sensing in microenvironments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
In Situ Optical Observation of Lithium Dendrite Pattern in Solid Polymer Electrolytes. Photo-Induced Radical Generation of Supramolecular Gel with Sign-Inverted and White-Light Circularly Polarized Luminescence. Unlocking Single-Particle Multiparametric Sensing: Decoupling Temperature and Viscosity Readouts through Upconverting Polarized Spectroscopy. A Dual Effect Additive Modified Electrolyte Strategy to Improve the Electrochemical Performance of Zinc-Based Prussian Blue Analogs Energy Storage Device. Design of Self-Standing Chiral Covalent-Organic Framework Nanochannel Membrane for Enantioselective Sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1