Jin Wang, Shengyi Yang, Liang Zhang, Xuedong Xiao, Zihao Deng, Xinmeng Chen, Cheng Liu, Gongyue Huang, Ryan T K Kwok, Jacky W Y Lam, Ben Zhong Tang
{"title":"通过齐聚物策略构建柔性多孔有机盐晶体","authors":"Jin Wang, Shengyi Yang, Liang Zhang, Xuedong Xiao, Zihao Deng, Xinmeng Chen, Cheng Liu, Gongyue Huang, Ryan T K Kwok, Jacky W Y Lam, Ben Zhong Tang","doi":"10.1021/jacs.4c10713","DOIUrl":null,"url":null,"abstract":"<p><p>The unique ionic channels and highly polar pore structures have distinguished crystalline porous organic salts (CPOSs) from conventional porous frameworks in the past decade. Up to now, CPOSs were all constructed by a monoionic strategy, in which two types of building units individually bearing anionic or cationic groups were introduced, thus increasing complexity in the synthesis of CPOSs. In this study, by utilizing stereoisomeric compounds of TPE-NS-Z or TPE-NS-E bearing both anionic and cationic groups as a single building unit, the zwitterionic strategy was proven feasible in constructing CPOSs. Benefiting from the single building unit, the zwitterionic strategy simplified the preparation process and reduced the difficulty in studying the aggregation behavior of building units into CPOSs. And also, this novel strategy enabled precise control of the finally obtained CPOSs through fine-tuning of the initial building units. Surprisingly, the special parallel/vertical alternated stacking mode and unique ionic interaction networks in the crystal structure provided the flexible pore characteristic of CPOS-E, which further guaranteed the multitime controllable release of highly polar chemicals in different solvents.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31042-31052"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing Flexible Crystalline Porous Organic Salts via a Zwitterionic Strategy.\",\"authors\":\"Jin Wang, Shengyi Yang, Liang Zhang, Xuedong Xiao, Zihao Deng, Xinmeng Chen, Cheng Liu, Gongyue Huang, Ryan T K Kwok, Jacky W Y Lam, Ben Zhong Tang\",\"doi\":\"10.1021/jacs.4c10713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The unique ionic channels and highly polar pore structures have distinguished crystalline porous organic salts (CPOSs) from conventional porous frameworks in the past decade. Up to now, CPOSs were all constructed by a monoionic strategy, in which two types of building units individually bearing anionic or cationic groups were introduced, thus increasing complexity in the synthesis of CPOSs. In this study, by utilizing stereoisomeric compounds of TPE-NS-Z or TPE-NS-E bearing both anionic and cationic groups as a single building unit, the zwitterionic strategy was proven feasible in constructing CPOSs. Benefiting from the single building unit, the zwitterionic strategy simplified the preparation process and reduced the difficulty in studying the aggregation behavior of building units into CPOSs. And also, this novel strategy enabled precise control of the finally obtained CPOSs through fine-tuning of the initial building units. Surprisingly, the special parallel/vertical alternated stacking mode and unique ionic interaction networks in the crystal structure provided the flexible pore characteristic of CPOS-E, which further guaranteed the multitime controllable release of highly polar chemicals in different solvents.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"31042-31052\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c10713\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10713","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Constructing Flexible Crystalline Porous Organic Salts via a Zwitterionic Strategy.
The unique ionic channels and highly polar pore structures have distinguished crystalline porous organic salts (CPOSs) from conventional porous frameworks in the past decade. Up to now, CPOSs were all constructed by a monoionic strategy, in which two types of building units individually bearing anionic or cationic groups were introduced, thus increasing complexity in the synthesis of CPOSs. In this study, by utilizing stereoisomeric compounds of TPE-NS-Z or TPE-NS-E bearing both anionic and cationic groups as a single building unit, the zwitterionic strategy was proven feasible in constructing CPOSs. Benefiting from the single building unit, the zwitterionic strategy simplified the preparation process and reduced the difficulty in studying the aggregation behavior of building units into CPOSs. And also, this novel strategy enabled precise control of the finally obtained CPOSs through fine-tuning of the initial building units. Surprisingly, the special parallel/vertical alternated stacking mode and unique ionic interaction networks in the crystal structure provided the flexible pore characteristic of CPOS-E, which further guaranteed the multitime controllable release of highly polar chemicals in different solvents.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.