{"title":"在液化氨中通过阴极氧活化电化学合成亚硝酸盐和硝酸盐。","authors":"Moritz Lukas Krebs, Ferdi Schüth","doi":"10.1021/jacs.4c10279","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical oxidation of ammonia (NH<sub>3</sub>) enables decentralized small-scale synthesis of nitrate (NO<sub>3</sub><sup>-</sup>) and nitrite (NO<sub>2</sub><sup>-</sup>) under ambient conditions by directly utilizing renewable energy. Yet, their electrosynthesis has been restricted to aqueous media and low ammonia concentrations. For the first time, we demonstrate here a strategy enabling the direct electrooxidation of liquefied NH<sub>3</sub> to NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> by using molecular oxygen, achieving combined Faraday efficiencies above 40%.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"30753-30757"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Synthesis of Nitrite and Nitrate via Cathodic Oxygen Activation in Liquefied Ammonia.\",\"authors\":\"Moritz Lukas Krebs, Ferdi Schüth\",\"doi\":\"10.1021/jacs.4c10279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrochemical oxidation of ammonia (NH<sub>3</sub>) enables decentralized small-scale synthesis of nitrate (NO<sub>3</sub><sup>-</sup>) and nitrite (NO<sub>2</sub><sup>-</sup>) under ambient conditions by directly utilizing renewable energy. Yet, their electrosynthesis has been restricted to aqueous media and low ammonia concentrations. For the first time, we demonstrate here a strategy enabling the direct electrooxidation of liquefied NH<sub>3</sub> to NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> by using molecular oxygen, achieving combined Faraday efficiencies above 40%.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"30753-30757\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c10279\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrochemical Synthesis of Nitrite and Nitrate via Cathodic Oxygen Activation in Liquefied Ammonia.
The electrochemical oxidation of ammonia (NH3) enables decentralized small-scale synthesis of nitrate (NO3-) and nitrite (NO2-) under ambient conditions by directly utilizing renewable energy. Yet, their electrosynthesis has been restricted to aqueous media and low ammonia concentrations. For the first time, we demonstrate here a strategy enabling the direct electrooxidation of liquefied NH3 to NO3- and NO2- by using molecular oxygen, achieving combined Faraday efficiencies above 40%.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.