母体在妊娠期间补充 Spermidine 可改善高产母猪的胎盘血管生成和繁殖性能。

IF 4.8 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Nutritional Biochemistry Pub Date : 2024-11-02 DOI:10.1016/j.jnutbio.2024.109792
Bingbing Duan, Sijiao Ran, Lin Wu, Tianci Dai, Jian Peng, Yuanfei Zhou
{"title":"母体在妊娠期间补充 Spermidine 可改善高产母猪的胎盘血管生成和繁殖性能。","authors":"Bingbing Duan, Sijiao Ran, Lin Wu, Tianci Dai, Jian Peng, Yuanfei Zhou","doi":"10.1016/j.jnutbio.2024.109792","DOIUrl":null,"url":null,"abstract":"<p><p>Spermidine (SPD) is a widely recognized polyamine compound found in mammalian cells and plays a key role in various cellular processes. We propose that SPD may enhance placental vascular development in pregnant sows, leading to increased birth weight of piglets. Six hundred and nine sows at 60 days of gestation were randomly assigned into a basal diet (CON group), basal diet supplemented 10 mg/kg of SPD (SPD1 group), and basal diet supplemented 20 mg/kg of SPD (SPD2 group), respectively. Compared with the CON, SPD1 significantly increased the average number of healthy piglets per litter and the placental efficiency (P < 0.05), while the average number of mummified fetus per litter and the percentage of weak piglets significantly decreased (P < 0.05). In the plasma metabolomics, SPD content in plasma of sows (P = 0.075) and umbilical cord plasma of piglets (P = 0.078) had an increasing trend in response to SPD1. Furthermore, SPD1 increased the expression of the vascular endothelial cell marker protein, platelet endothelial cell adhesionmolecule-1 (PECAM-1/CD31) and the density of placental stromal vessels (P < 0.05). Moreover, as compared to CON, SPD2 significantly decreased the average number of mummified fetus per litter (P < 0.05), while the placental efficiency and the expression of amino acid transporter solute carrier (SLC) family 7, member7 (SLC7A7) and glucose transporters SLC2A2) and SLC5A4 in placental tissue significantly increased (P < 0.05). These results suggest that maternal supplementation of SPD during pregnancy increased healthy litter number, and promoted placental tissue development. Our findings provide evidence that maternal SPD has the potential to improve the production performance of sows.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"109792"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maternal Supplementation Spermidine During Gestation Improves Placental Angiogenesis and Reproductive Performance of High Prolific Sows.\",\"authors\":\"Bingbing Duan, Sijiao Ran, Lin Wu, Tianci Dai, Jian Peng, Yuanfei Zhou\",\"doi\":\"10.1016/j.jnutbio.2024.109792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spermidine (SPD) is a widely recognized polyamine compound found in mammalian cells and plays a key role in various cellular processes. We propose that SPD may enhance placental vascular development in pregnant sows, leading to increased birth weight of piglets. Six hundred and nine sows at 60 days of gestation were randomly assigned into a basal diet (CON group), basal diet supplemented 10 mg/kg of SPD (SPD1 group), and basal diet supplemented 20 mg/kg of SPD (SPD2 group), respectively. Compared with the CON, SPD1 significantly increased the average number of healthy piglets per litter and the placental efficiency (P < 0.05), while the average number of mummified fetus per litter and the percentage of weak piglets significantly decreased (P < 0.05). In the plasma metabolomics, SPD content in plasma of sows (P = 0.075) and umbilical cord plasma of piglets (P = 0.078) had an increasing trend in response to SPD1. Furthermore, SPD1 increased the expression of the vascular endothelial cell marker protein, platelet endothelial cell adhesionmolecule-1 (PECAM-1/CD31) and the density of placental stromal vessels (P < 0.05). Moreover, as compared to CON, SPD2 significantly decreased the average number of mummified fetus per litter (P < 0.05), while the placental efficiency and the expression of amino acid transporter solute carrier (SLC) family 7, member7 (SLC7A7) and glucose transporters SLC2A2) and SLC5A4 in placental tissue significantly increased (P < 0.05). These results suggest that maternal supplementation of SPD during pregnancy increased healthy litter number, and promoted placental tissue development. Our findings provide evidence that maternal SPD has the potential to improve the production performance of sows.</p>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\" \",\"pages\":\"109792\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jnutbio.2024.109792\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2024.109792","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精胺(SPD)是一种广泛存在于哺乳动物细胞中的多胺化合物,在各种细胞过程中发挥着关键作用。我们认为,SPD 可促进妊娠母猪胎盘血管的发育,从而提高仔猪的出生体重。我们将妊娠 60 天的六百零九头母猪随机分为基础日粮(CON 组)、添加 10 毫克/千克 SPD 的基础日粮(SPD1 组)和添加 20 毫克/千克 SPD 的基础日粮(SPD2 组)。与对照组相比,SPD1组显著提高了平均每窝健康仔猪数和胎盘效率(P < 0.05),而平均每窝木乃伊胎数和弱仔猪百分比显著降低(P < 0.05)。在血浆代谢组学中,母猪血浆(P = 0.075)和仔猪脐带血浆(P = 0.078)中的 SPD 含量在 SPD1 的作用下呈上升趋势。此外,SPD1 还能增加血管内皮细胞标记蛋白、血小板内皮细胞粘附分子-1(PECAM-1/CD31)的表达和胎盘基质血管的密度(P < 0.05)。此外,与CON相比,SPD2显著降低了每胎木乃伊胎儿的平均数量(P<0.05),而胎盘效率和胎盘组织中氨基酸转运体溶质运载体(SLC)家族7成员(SLC7A7)、葡萄糖转运体SLC2A2和SLC5A4的表达量显著增加(P<0.05)。这些结果表明,母体在孕期补充 SPD 可增加健康产仔数,并促进胎盘组织的发育。我们的研究结果证明,母体补充 SPD 有可能提高母猪的生产性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maternal Supplementation Spermidine During Gestation Improves Placental Angiogenesis and Reproductive Performance of High Prolific Sows.

Spermidine (SPD) is a widely recognized polyamine compound found in mammalian cells and plays a key role in various cellular processes. We propose that SPD may enhance placental vascular development in pregnant sows, leading to increased birth weight of piglets. Six hundred and nine sows at 60 days of gestation were randomly assigned into a basal diet (CON group), basal diet supplemented 10 mg/kg of SPD (SPD1 group), and basal diet supplemented 20 mg/kg of SPD (SPD2 group), respectively. Compared with the CON, SPD1 significantly increased the average number of healthy piglets per litter and the placental efficiency (P < 0.05), while the average number of mummified fetus per litter and the percentage of weak piglets significantly decreased (P < 0.05). In the plasma metabolomics, SPD content in plasma of sows (P = 0.075) and umbilical cord plasma of piglets (P = 0.078) had an increasing trend in response to SPD1. Furthermore, SPD1 increased the expression of the vascular endothelial cell marker protein, platelet endothelial cell adhesionmolecule-1 (PECAM-1/CD31) and the density of placental stromal vessels (P < 0.05). Moreover, as compared to CON, SPD2 significantly decreased the average number of mummified fetus per litter (P < 0.05), while the placental efficiency and the expression of amino acid transporter solute carrier (SLC) family 7, member7 (SLC7A7) and glucose transporters SLC2A2) and SLC5A4 in placental tissue significantly increased (P < 0.05). These results suggest that maternal supplementation of SPD during pregnancy increased healthy litter number, and promoted placental tissue development. Our findings provide evidence that maternal SPD has the potential to improve the production performance of sows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nutritional Biochemistry
Journal of Nutritional Biochemistry 医学-生化与分子生物学
CiteScore
9.50
自引率
3.60%
发文量
237
审稿时长
68 days
期刊介绍: Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology. Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.
期刊最新文献
Short term high-fat diet induced liver ILC1 differentiation associated with the TLR9 activation. Sulforaphane suppresses Aβ accumulation and tau hyperphosphorylation in vascular cognitive impairment(VCI). Effects of adding niacinamide to diets with normal and low protein levels on the immunity, antioxidant, and intestinal microbiota in growing-finishing pigs. Curcumol ameliorates alcohol and high-fat diet-induced fatty liver disease via modulation of the Ceruloplasmin/iron overload/mtDNA signaling pathway. Maternal obesity changes the small intestine endocannabinoid system and fecal metabolites of weanling rats associated with reduced intestinal permeability and impaired glucose homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1