Jianqi Chen , Zhe Liu , Yingting Zhu , Zhidong Li , Yuwen Wen , Danna Chen , Jingying Liang , Yue Xiao , Yunxia Leng , Yehong Zhuo
{"title":"多组学综合分析揭示了线粒体功能障碍在老年性黄斑变性发病机制中的分子联系。","authors":"Jianqi Chen , Zhe Liu , Yingting Zhu , Zhidong Li , Yuwen Wen , Danna Chen , Jingying Liang , Yue Xiao , Yunxia Leng , Yehong Zhuo","doi":"10.1016/j.exer.2024.110141","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial dysfunction is linked to age-related macular degeneration (AMD), but its mechanisms and related molecular networks remain unclear. We explored the association between mitochondrial-related genes and AMD by integrating multiomic data. We acquired summary-level data on mitochondrial-related protein abundance, gene expression, and gene methylation from quantitative trait locus studies. Genetic associations with AMD were sourced from the International Age-related Macular Degeneration Genomics Consortium (discovery), FinnGen (replication), and UK Biobank (replication) studies. We used summary-data-based Mendelian randomization to assess the correlations between mitochondrial-related gene molecular characteristics and AMD. Furthermore, colocalization analysis was performed to ascertain if the detected signal pairings had a common causative genetic variation. Mitochondrial-related gene <em>NFKB1</em> demonstrated a protective role in AMD (tier 1 evidence), whereas <em>HSPA1A</em> and <em>HSPA1B</em> genes were also associated with decreased AMD risk (tier 2 evidence). The methylation of cg09390974 and cg15409712 in <em>NFKB1</em> was associated with increased NFKB1 expression, consistent with the protective effect on AMD risk, whereas inverse associations were observed between gene methylation and gene expression for HSPA1B (cg04835051 and cg16372051), supporting the risk roles of methylation in AMD. At circulating protein level, genetically predicted higher levels of HSPA1A (odds ratio [OR] 0.28, 95% confidence interval [CI] 0.19−0.41, <em>P</em> < 0.001), HSPA1B (OR 0.13, 95% CI 0.06−0.27, <em>P</em> < 0.001), and NFKB1 (OR 0.43, 95% CI 0.27−0.68, <em>P</em> < 0.001) were inversely associated with AMD risk. These associations were corroborated in the colocalization analysis. We identified AMD-linked mitochondrial-related genes, potentially improving the understanding of its pathophysiological mechanisms and aiding the identification of novel pharmaceutical targets.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"249 ","pages":"Article 110141"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative multiomic analysis unveils the molecular nexus of mitochondrial dysfunction in the pathogenesis of age-related macular degeneration\",\"authors\":\"Jianqi Chen , Zhe Liu , Yingting Zhu , Zhidong Li , Yuwen Wen , Danna Chen , Jingying Liang , Yue Xiao , Yunxia Leng , Yehong Zhuo\",\"doi\":\"10.1016/j.exer.2024.110141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mitochondrial dysfunction is linked to age-related macular degeneration (AMD), but its mechanisms and related molecular networks remain unclear. We explored the association between mitochondrial-related genes and AMD by integrating multiomic data. We acquired summary-level data on mitochondrial-related protein abundance, gene expression, and gene methylation from quantitative trait locus studies. Genetic associations with AMD were sourced from the International Age-related Macular Degeneration Genomics Consortium (discovery), FinnGen (replication), and UK Biobank (replication) studies. We used summary-data-based Mendelian randomization to assess the correlations between mitochondrial-related gene molecular characteristics and AMD. Furthermore, colocalization analysis was performed to ascertain if the detected signal pairings had a common causative genetic variation. Mitochondrial-related gene <em>NFKB1</em> demonstrated a protective role in AMD (tier 1 evidence), whereas <em>HSPA1A</em> and <em>HSPA1B</em> genes were also associated with decreased AMD risk (tier 2 evidence). The methylation of cg09390974 and cg15409712 in <em>NFKB1</em> was associated with increased NFKB1 expression, consistent with the protective effect on AMD risk, whereas inverse associations were observed between gene methylation and gene expression for HSPA1B (cg04835051 and cg16372051), supporting the risk roles of methylation in AMD. At circulating protein level, genetically predicted higher levels of HSPA1A (odds ratio [OR] 0.28, 95% confidence interval [CI] 0.19−0.41, <em>P</em> < 0.001), HSPA1B (OR 0.13, 95% CI 0.06−0.27, <em>P</em> < 0.001), and NFKB1 (OR 0.43, 95% CI 0.27−0.68, <em>P</em> < 0.001) were inversely associated with AMD risk. These associations were corroborated in the colocalization analysis. We identified AMD-linked mitochondrial-related genes, potentially improving the understanding of its pathophysiological mechanisms and aiding the identification of novel pharmaceutical targets.</div></div>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\"249 \",\"pages\":\"Article 110141\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014483524003634\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483524003634","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Integrative multiomic analysis unveils the molecular nexus of mitochondrial dysfunction in the pathogenesis of age-related macular degeneration
Mitochondrial dysfunction is linked to age-related macular degeneration (AMD), but its mechanisms and related molecular networks remain unclear. We explored the association between mitochondrial-related genes and AMD by integrating multiomic data. We acquired summary-level data on mitochondrial-related protein abundance, gene expression, and gene methylation from quantitative trait locus studies. Genetic associations with AMD were sourced from the International Age-related Macular Degeneration Genomics Consortium (discovery), FinnGen (replication), and UK Biobank (replication) studies. We used summary-data-based Mendelian randomization to assess the correlations between mitochondrial-related gene molecular characteristics and AMD. Furthermore, colocalization analysis was performed to ascertain if the detected signal pairings had a common causative genetic variation. Mitochondrial-related gene NFKB1 demonstrated a protective role in AMD (tier 1 evidence), whereas HSPA1A and HSPA1B genes were also associated with decreased AMD risk (tier 2 evidence). The methylation of cg09390974 and cg15409712 in NFKB1 was associated with increased NFKB1 expression, consistent with the protective effect on AMD risk, whereas inverse associations were observed between gene methylation and gene expression for HSPA1B (cg04835051 and cg16372051), supporting the risk roles of methylation in AMD. At circulating protein level, genetically predicted higher levels of HSPA1A (odds ratio [OR] 0.28, 95% confidence interval [CI] 0.19−0.41, P < 0.001), HSPA1B (OR 0.13, 95% CI 0.06−0.27, P < 0.001), and NFKB1 (OR 0.43, 95% CI 0.27−0.68, P < 0.001) were inversely associated with AMD risk. These associations were corroborated in the colocalization analysis. We identified AMD-linked mitochondrial-related genes, potentially improving the understanding of its pathophysiological mechanisms and aiding the identification of novel pharmaceutical targets.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.