提出一种以轴突为中心分析 IOP 引起的机械损伤的方法。

IF 5 2区 医学 Q1 OPHTHALMOLOGY Investigative ophthalmology & visual science Pub Date : 2024-11-04 DOI:10.1167/iovs.65.13.1
Manik Bansal, Bingrui Wang, Susannah Waxman, Fuqiang Zhong, Yi Hua, Yuankai Lu, Juan Reynaud, Brad Fortune, Ian A Sigal
{"title":"提出一种以轴突为中心分析 IOP 引起的机械损伤的方法。","authors":"Manik Bansal, Bingrui Wang, Susannah Waxman, Fuqiang Zhong, Yi Hua, Yuankai Lu, Juan Reynaud, Brad Fortune, Ian A Sigal","doi":"10.1167/iovs.65.13.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>IOP-induced mechanical insult on retinal ganglion cell axons within the optic nerve head (ONH) is believed to be a key factor in axonal damage and glaucoma. However, most studies focus on tissue-level mechanical deformations, overlooking that axons are long and thin, and that their susceptibility to damage likely depends on the insult's type (e.g. stretch/compression) and orientation (longitudinal/transverse). We propose an axon-centric approach to quantify IOP-induced mechanical insult from an axon perspective.</p><p><strong>Methods: </strong>We used optical coherence tomography (OCT) scans from a healthy monkey eye along with histological images of cryosections to reconstruct the axon-occupied volume including detailed lamina cribrosa (LC) pores. Tissue-level strains were determined experimentally using digital volume correlation from OCT scans at baseline and elevated IOPs, then transformed into axonal strains using axon paths estimated by a fluid mechanics simulation.</p><p><strong>Results: </strong>Axons in the LC and post-LC regions predominantly experienced longitudinal compression and transverse stretch, whereas those in the pre-LC and ONH rim mainly suffered longitudinal stretch and transverse compression. No clear patterns were observed for tissue-level strains.</p><p><strong>Conclusions: </strong>Our approach allowed discerning axonal longitudinal and transverse mechanical insults, which are likely associated with different mechanisms of axonal damage. The technique also enabled quantifying insult along individual axon paths, providing a novel link relating the retinal nerve fiber layer and the optic nerve through the LC via individual axons. This is a promising approach to establish a clearer connection between IOP-induced insult and glaucoma. Further studies should evaluate a larger cohort.</p>","PeriodicalId":14620,"journal":{"name":"Investigative ophthalmology & visual science","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposing a Methodology for Axon-Centric Analysis of IOP-Induced Mechanical Insult.\",\"authors\":\"Manik Bansal, Bingrui Wang, Susannah Waxman, Fuqiang Zhong, Yi Hua, Yuankai Lu, Juan Reynaud, Brad Fortune, Ian A Sigal\",\"doi\":\"10.1167/iovs.65.13.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>IOP-induced mechanical insult on retinal ganglion cell axons within the optic nerve head (ONH) is believed to be a key factor in axonal damage and glaucoma. However, most studies focus on tissue-level mechanical deformations, overlooking that axons are long and thin, and that their susceptibility to damage likely depends on the insult's type (e.g. stretch/compression) and orientation (longitudinal/transverse). We propose an axon-centric approach to quantify IOP-induced mechanical insult from an axon perspective.</p><p><strong>Methods: </strong>We used optical coherence tomography (OCT) scans from a healthy monkey eye along with histological images of cryosections to reconstruct the axon-occupied volume including detailed lamina cribrosa (LC) pores. Tissue-level strains were determined experimentally using digital volume correlation from OCT scans at baseline and elevated IOPs, then transformed into axonal strains using axon paths estimated by a fluid mechanics simulation.</p><p><strong>Results: </strong>Axons in the LC and post-LC regions predominantly experienced longitudinal compression and transverse stretch, whereas those in the pre-LC and ONH rim mainly suffered longitudinal stretch and transverse compression. No clear patterns were observed for tissue-level strains.</p><p><strong>Conclusions: </strong>Our approach allowed discerning axonal longitudinal and transverse mechanical insults, which are likely associated with different mechanisms of axonal damage. The technique also enabled quantifying insult along individual axon paths, providing a novel link relating the retinal nerve fiber layer and the optic nerve through the LC via individual axons. This is a promising approach to establish a clearer connection between IOP-induced insult and glaucoma. Further studies should evaluate a larger cohort.</p>\",\"PeriodicalId\":14620,\"journal\":{\"name\":\"Investigative ophthalmology & visual science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Investigative ophthalmology & visual science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/iovs.65.13.1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative ophthalmology & visual science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/iovs.65.13.1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:眼压对视神经头(ONH)内视网膜神经节细胞轴突造成的机械损伤被认为是轴突损伤和青光眼的关键因素。然而,大多数研究都侧重于组织层面的机械变形,忽略了轴突又长又细,而且它们对损伤的敏感性可能取决于损伤的类型(如拉伸/压缩)和方向(纵向/横向)。我们提出了一种以轴突为中心的方法,从轴突的角度量化眼压诱导的机械损伤:方法:我们使用健康猴眼的光学相干断层扫描(OCT)和冷冻切片的组织学图像来重建轴突占据的体积,包括详细的颅底薄层(LC)孔隙。组织级应变是通过基线和眼压升高时的 OCT 扫描数字体积相关性实验确定的,然后通过流体力学模拟估算的轴突路径转化为轴突应变:LC和LC后区域的轴突主要受到纵向压缩和横向拉伸,而LC前和ONH边缘的轴突主要受到纵向拉伸和横向压缩。组织层面的应变没有观察到明显的模式:我们的方法可以分辨轴突的纵向和横向机械损伤,这可能与轴突损伤的不同机制有关。该技术还能量化单个轴突路径上的损伤,通过单个轴突将视网膜神经纤维层和视神经通过视网膜神经纤维层联系起来。这是一种很有前景的方法,可以更清晰地建立眼压诱导的损伤与青光眼之间的联系。进一步的研究应该对更大的群体进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proposing a Methodology for Axon-Centric Analysis of IOP-Induced Mechanical Insult.

Purpose: IOP-induced mechanical insult on retinal ganglion cell axons within the optic nerve head (ONH) is believed to be a key factor in axonal damage and glaucoma. However, most studies focus on tissue-level mechanical deformations, overlooking that axons are long and thin, and that their susceptibility to damage likely depends on the insult's type (e.g. stretch/compression) and orientation (longitudinal/transverse). We propose an axon-centric approach to quantify IOP-induced mechanical insult from an axon perspective.

Methods: We used optical coherence tomography (OCT) scans from a healthy monkey eye along with histological images of cryosections to reconstruct the axon-occupied volume including detailed lamina cribrosa (LC) pores. Tissue-level strains were determined experimentally using digital volume correlation from OCT scans at baseline and elevated IOPs, then transformed into axonal strains using axon paths estimated by a fluid mechanics simulation.

Results: Axons in the LC and post-LC regions predominantly experienced longitudinal compression and transverse stretch, whereas those in the pre-LC and ONH rim mainly suffered longitudinal stretch and transverse compression. No clear patterns were observed for tissue-level strains.

Conclusions: Our approach allowed discerning axonal longitudinal and transverse mechanical insults, which are likely associated with different mechanisms of axonal damage. The technique also enabled quantifying insult along individual axon paths, providing a novel link relating the retinal nerve fiber layer and the optic nerve through the LC via individual axons. This is a promising approach to establish a clearer connection between IOP-induced insult and glaucoma. Further studies should evaluate a larger cohort.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
4.50%
发文量
339
审稿时长
1 months
期刊介绍: Investigative Ophthalmology & Visual Science (IOVS), published as ready online, is a peer-reviewed academic journal of the Association for Research in Vision and Ophthalmology (ARVO). IOVS features original research, mostly pertaining to clinical and laboratory ophthalmology and vision research in general.
期刊最新文献
Midperipheral Microvascular Defects and Their Associations With Vitreoretinal Abnormalities in Early-Stage Familial Exudative Vitreoretinopathy. Proposing a Methodology for Axon-Centric Analysis of IOP-Induced Mechanical Insult. Retinal Function in Advanced Multiple Sclerosis. Treatment of Conjunctival Melanoma Cell Lines With a Light-Activated Virus-Like Drug Conjugate Induces Immunogenic Cell Death. Mesenchymal Stem Cells-Derived Exosomal miR-223-3p Alleviates Ocular Surface Damage and Inflammation by Downregulating Fbxw7 in Dry Eye Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1