{"title":"乌梅丸通过 JAK2/STAT3 通路调节 Sox9 的表达抑制结直肠癌干细胞的生长","authors":"Minfeng Zhou, Huifang Niu, Damin Lu, Haiming Zhang, Dan Luo, Zhaomin Yu, Guichen Huang, Jinxiao Li, Chutong Xiong, Qian Tang, Hongxing Zhang, Fengxia Liang, Rui Chen","doi":"10.1016/j.jep.2024.118998","DOIUrl":null,"url":null,"abstract":"<p><strong>Ethnopharmacological relevance: </strong>Wu Mei Wan (WMW) is a traditional Chinese herbal formula with a long-standing history in Chinese medicine, valued for its therapeutic properties. However, its potential anti-cancer effects, especially against colorectal cancer (CRC), have not been fully elucidated.</p><p><strong>Aim of the study: </strong>This study aims to investigate the effects of WMW on colorectal cancer stemness and to elucidate the underlying molecular mechanisms, focusing on the modulation of Sox9 expression via the JAK2/STAT3 signaling pathway.</p><p><strong>Materials and methods: </strong>WMW was prepared and analyzed using UPLC-MS to identify their main components. To study the therapeutic effects of WMW, AOM/DSS-induced CRC mouse models were established. A comprehensive suite of experimental techniques, including in vivo imaging, cell culture, transfection, CCK-8 assays, colony formation assays, wound healing assays, cell migration assays, Western blotting, dot blot analysis, RT-qPCR, immunohistochemistry, cell transcriptome sequencing, and gene set enrichment analysis, were utilized to explore the pharmacological effects and mechanisms of WMW.</p><p><strong>Results: </strong>WMW significantly inhibited CRC cell viability, proliferation, invasion, and migration in vitro. Mechanistically, WMW suppressed CRC stemness by downregulating Sox9 expression through the JAK2/STAT3 signaling pathway. Additionally, the regulation of methylation and demethylation mediated by TET1 and DNMT3a expression was directly associated with the JAK2/STAT3 pathway's modulation of Sox9 expression. In vivo, WMW treatment attenuated CRC progression and metastasis with minimal toxicity.</p><p><strong>Conclusion: </strong>These findings suggest that WMW exerts potent anti-CRC stemness effects by regulating Sox9 via the JAK2/STAT3 signaling pathway, underscoring its potential as a promising therapeutic agent for CRC treatment.</p>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wu Mei Wan suppresses colorectal cancer stemness by regulating Sox9 expression via JAK2/STAT3 pathway.\",\"authors\":\"Minfeng Zhou, Huifang Niu, Damin Lu, Haiming Zhang, Dan Luo, Zhaomin Yu, Guichen Huang, Jinxiao Li, Chutong Xiong, Qian Tang, Hongxing Zhang, Fengxia Liang, Rui Chen\",\"doi\":\"10.1016/j.jep.2024.118998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Ethnopharmacological relevance: </strong>Wu Mei Wan (WMW) is a traditional Chinese herbal formula with a long-standing history in Chinese medicine, valued for its therapeutic properties. However, its potential anti-cancer effects, especially against colorectal cancer (CRC), have not been fully elucidated.</p><p><strong>Aim of the study: </strong>This study aims to investigate the effects of WMW on colorectal cancer stemness and to elucidate the underlying molecular mechanisms, focusing on the modulation of Sox9 expression via the JAK2/STAT3 signaling pathway.</p><p><strong>Materials and methods: </strong>WMW was prepared and analyzed using UPLC-MS to identify their main components. To study the therapeutic effects of WMW, AOM/DSS-induced CRC mouse models were established. A comprehensive suite of experimental techniques, including in vivo imaging, cell culture, transfection, CCK-8 assays, colony formation assays, wound healing assays, cell migration assays, Western blotting, dot blot analysis, RT-qPCR, immunohistochemistry, cell transcriptome sequencing, and gene set enrichment analysis, were utilized to explore the pharmacological effects and mechanisms of WMW.</p><p><strong>Results: </strong>WMW significantly inhibited CRC cell viability, proliferation, invasion, and migration in vitro. Mechanistically, WMW suppressed CRC stemness by downregulating Sox9 expression through the JAK2/STAT3 signaling pathway. Additionally, the regulation of methylation and demethylation mediated by TET1 and DNMT3a expression was directly associated with the JAK2/STAT3 pathway's modulation of Sox9 expression. In vivo, WMW treatment attenuated CRC progression and metastasis with minimal toxicity.</p><p><strong>Conclusion: </strong>These findings suggest that WMW exerts potent anti-CRC stemness effects by regulating Sox9 via the JAK2/STAT3 signaling pathway, underscoring its potential as a promising therapeutic agent for CRC treatment.</p>\",\"PeriodicalId\":15761,\"journal\":{\"name\":\"Journal of ethnopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ethnopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jep.2024.118998\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jep.2024.118998","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Wu Mei Wan suppresses colorectal cancer stemness by regulating Sox9 expression via JAK2/STAT3 pathway.
Ethnopharmacological relevance: Wu Mei Wan (WMW) is a traditional Chinese herbal formula with a long-standing history in Chinese medicine, valued for its therapeutic properties. However, its potential anti-cancer effects, especially against colorectal cancer (CRC), have not been fully elucidated.
Aim of the study: This study aims to investigate the effects of WMW on colorectal cancer stemness and to elucidate the underlying molecular mechanisms, focusing on the modulation of Sox9 expression via the JAK2/STAT3 signaling pathway.
Materials and methods: WMW was prepared and analyzed using UPLC-MS to identify their main components. To study the therapeutic effects of WMW, AOM/DSS-induced CRC mouse models were established. A comprehensive suite of experimental techniques, including in vivo imaging, cell culture, transfection, CCK-8 assays, colony formation assays, wound healing assays, cell migration assays, Western blotting, dot blot analysis, RT-qPCR, immunohistochemistry, cell transcriptome sequencing, and gene set enrichment analysis, were utilized to explore the pharmacological effects and mechanisms of WMW.
Results: WMW significantly inhibited CRC cell viability, proliferation, invasion, and migration in vitro. Mechanistically, WMW suppressed CRC stemness by downregulating Sox9 expression through the JAK2/STAT3 signaling pathway. Additionally, the regulation of methylation and demethylation mediated by TET1 and DNMT3a expression was directly associated with the JAK2/STAT3 pathway's modulation of Sox9 expression. In vivo, WMW treatment attenuated CRC progression and metastasis with minimal toxicity.
Conclusion: These findings suggest that WMW exerts potent anti-CRC stemness effects by regulating Sox9 via the JAK2/STAT3 signaling pathway, underscoring its potential as a promising therapeutic agent for CRC treatment.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.