{"title":"利用优化的壳聚糖纳米颗粒联合递送二甲双胍和甲氨蝶呤,在体内协同治疗三阴性乳腺癌。","authors":"Alireza Karimian-Shaddel , Hamed Dadashi , Milad Mashinchian , Aria Mohabbat , Amir Reza Nazemiyeh , Somayeh Vandghanooni , Morteza Eskandani","doi":"10.1016/j.ijpharm.2024.124897","DOIUrl":null,"url":null,"abstract":"<div><div>The development of effective therapeutic strategies for triple-negative breast cancer (TNBC), an aggressive subtype with limited treatment options, remains a critical challenge. This study aimed to design and evaluate a combination therapy using chitosan nanoparticles (Cs NPs) loaded with metformin (Met) and methotrexate (MTX) as a promising approach for TNBC management.</div><div>The Cs NPs exhibited an average size of 78.8 ± 25.84 nm for blank Cs NPs, 84.50 ± 22.54 nm for Met-Cs NPs, and 86.70 ± 30.90 nm for MTX-Cs NPs, with positive surface charges of 26.40 ± 1.40 mV, 28.20 ± 1.60 mV, and 14.30 ± 2.40 mV, respectively. The drug encapsulation efficiency was 88.56 ± 2.26 % for Met-Cs NPs and 97.03 ± 0.52 % for MTX-Cs NPs.</div><div>The cellular uptake studies demonstrated a time-dependent increase in the accumulation of Shikonin-labeled Cs NPs in 4T1 cells. The cytotoxicity assays revealed that Met-Cs NPs and MTX-Cs NPs exhibited significantly lower IC50 values (19.85 μg/mL and 103.2 ng/mL, respectively) compared to the plain drugs at 48 h. The combination of Met-/MTX-Cs NPs showed a synergistic cytotoxic effect, inducing 50 % cell death at 15.233 μg/mL of Met and 0.166 μg/mL of MTX. In vivo studies using a 4T1 xenograft mouse model demonstrated that the combination of Met-/MTX-Cs NPs resulted in a 100 % reduction in initial tumor volume, compared to a 40 % decrease with the free drug combination. The tumor growth inhibition was 70.45 % for the Met-/MTX-Cs NPs group, significantly higher than the 33.86 % observed in the free drug combination group. The findings of this study highlight the potential of the Met-/MTX-Cs NPs combination as a novel and effective therapeutic approach for TNBC management. The enhanced therapeutic efficacy, improved safety profile, and the ability to modulate key signaling pathways make this nanoparticle-based combination therapy a promising candidate for further clinical investigation.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"667 ","pages":"Article 124897"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Codelivery of metformin and methotrexate with optimized chitosan nanoparticles for synergistic triple-negative breast cancer therapy in vivo\",\"authors\":\"Alireza Karimian-Shaddel , Hamed Dadashi , Milad Mashinchian , Aria Mohabbat , Amir Reza Nazemiyeh , Somayeh Vandghanooni , Morteza Eskandani\",\"doi\":\"10.1016/j.ijpharm.2024.124897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of effective therapeutic strategies for triple-negative breast cancer (TNBC), an aggressive subtype with limited treatment options, remains a critical challenge. This study aimed to design and evaluate a combination therapy using chitosan nanoparticles (Cs NPs) loaded with metformin (Met) and methotrexate (MTX) as a promising approach for TNBC management.</div><div>The Cs NPs exhibited an average size of 78.8 ± 25.84 nm for blank Cs NPs, 84.50 ± 22.54 nm for Met-Cs NPs, and 86.70 ± 30.90 nm for MTX-Cs NPs, with positive surface charges of 26.40 ± 1.40 mV, 28.20 ± 1.60 mV, and 14.30 ± 2.40 mV, respectively. The drug encapsulation efficiency was 88.56 ± 2.26 % for Met-Cs NPs and 97.03 ± 0.52 % for MTX-Cs NPs.</div><div>The cellular uptake studies demonstrated a time-dependent increase in the accumulation of Shikonin-labeled Cs NPs in 4T1 cells. The cytotoxicity assays revealed that Met-Cs NPs and MTX-Cs NPs exhibited significantly lower IC50 values (19.85 μg/mL and 103.2 ng/mL, respectively) compared to the plain drugs at 48 h. The combination of Met-/MTX-Cs NPs showed a synergistic cytotoxic effect, inducing 50 % cell death at 15.233 μg/mL of Met and 0.166 μg/mL of MTX. In vivo studies using a 4T1 xenograft mouse model demonstrated that the combination of Met-/MTX-Cs NPs resulted in a 100 % reduction in initial tumor volume, compared to a 40 % decrease with the free drug combination. The tumor growth inhibition was 70.45 % for the Met-/MTX-Cs NPs group, significantly higher than the 33.86 % observed in the free drug combination group. The findings of this study highlight the potential of the Met-/MTX-Cs NPs combination as a novel and effective therapeutic approach for TNBC management. The enhanced therapeutic efficacy, improved safety profile, and the ability to modulate key signaling pathways make this nanoparticle-based combination therapy a promising candidate for further clinical investigation.</div></div>\",\"PeriodicalId\":14187,\"journal\":{\"name\":\"International Journal of Pharmaceutics\",\"volume\":\"667 \",\"pages\":\"Article 124897\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378517324011311\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324011311","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Codelivery of metformin and methotrexate with optimized chitosan nanoparticles for synergistic triple-negative breast cancer therapy in vivo
The development of effective therapeutic strategies for triple-negative breast cancer (TNBC), an aggressive subtype with limited treatment options, remains a critical challenge. This study aimed to design and evaluate a combination therapy using chitosan nanoparticles (Cs NPs) loaded with metformin (Met) and methotrexate (MTX) as a promising approach for TNBC management.
The Cs NPs exhibited an average size of 78.8 ± 25.84 nm for blank Cs NPs, 84.50 ± 22.54 nm for Met-Cs NPs, and 86.70 ± 30.90 nm for MTX-Cs NPs, with positive surface charges of 26.40 ± 1.40 mV, 28.20 ± 1.60 mV, and 14.30 ± 2.40 mV, respectively. The drug encapsulation efficiency was 88.56 ± 2.26 % for Met-Cs NPs and 97.03 ± 0.52 % for MTX-Cs NPs.
The cellular uptake studies demonstrated a time-dependent increase in the accumulation of Shikonin-labeled Cs NPs in 4T1 cells. The cytotoxicity assays revealed that Met-Cs NPs and MTX-Cs NPs exhibited significantly lower IC50 values (19.85 μg/mL and 103.2 ng/mL, respectively) compared to the plain drugs at 48 h. The combination of Met-/MTX-Cs NPs showed a synergistic cytotoxic effect, inducing 50 % cell death at 15.233 μg/mL of Met and 0.166 μg/mL of MTX. In vivo studies using a 4T1 xenograft mouse model demonstrated that the combination of Met-/MTX-Cs NPs resulted in a 100 % reduction in initial tumor volume, compared to a 40 % decrease with the free drug combination. The tumor growth inhibition was 70.45 % for the Met-/MTX-Cs NPs group, significantly higher than the 33.86 % observed in the free drug combination group. The findings of this study highlight the potential of the Met-/MTX-Cs NPs combination as a novel and effective therapeutic approach for TNBC management. The enhanced therapeutic efficacy, improved safety profile, and the ability to modulate key signaling pathways make this nanoparticle-based combination therapy a promising candidate for further clinical investigation.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.