Fayu Yang , Yuxi Yang , Xiaoyun Li , Saba Aliyari , Guoliang Zhu , Zixiang Zhu , Haixue Zheng , Shilei Zhang
{"title":"基于纳米抗体的 TRIM-away 可靶向非洲猪瘟病毒的胞内蛋白降解。","authors":"Fayu Yang , Yuxi Yang , Xiaoyun Li , Saba Aliyari , Guoliang Zhu , Zixiang Zhu , Haixue Zheng , Shilei Zhang","doi":"10.1016/j.virol.2024.110283","DOIUrl":null,"url":null,"abstract":"<div><div>African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a hemorrhagic illness with high fatality rates in domestic pigs that has resulted in a substantial socio-economic loss and threatens the global pork industry. Very few safe and efficient vaccines or compounds against ASF are commercially available, thus developing new antiviral strategies is urgently required. Targeted protein degradation (TPD) has emerged as one of the most innovative strategies for drug discovery. In this study, we generate Nanobody-based TRIM-aways specifically binding with and targeting ASFV-encoded structural proteins p30, p54, and p72 for degradation. Furthermore, nanobody-based trim-aways exhibit robust viral structural protein degradation capabilities in ASFV-infected iPAM and MA104 cells through both proteasomal and lysosomal pathways, concurrently demonstrating potent anti-ASFV activity with less viral production. Our study highlights the Nanobody-based TRIM-away targeting viral protein degradation as a potential candidate for the development of a novel antiviral strategy against ASF.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"600 ","pages":"Article 110283"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nanobody-based TRIM-away targets the intracellular protein degradation of African swine fever virus\",\"authors\":\"Fayu Yang , Yuxi Yang , Xiaoyun Li , Saba Aliyari , Guoliang Zhu , Zixiang Zhu , Haixue Zheng , Shilei Zhang\",\"doi\":\"10.1016/j.virol.2024.110283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a hemorrhagic illness with high fatality rates in domestic pigs that has resulted in a substantial socio-economic loss and threatens the global pork industry. Very few safe and efficient vaccines or compounds against ASF are commercially available, thus developing new antiviral strategies is urgently required. Targeted protein degradation (TPD) has emerged as one of the most innovative strategies for drug discovery. In this study, we generate Nanobody-based TRIM-aways specifically binding with and targeting ASFV-encoded structural proteins p30, p54, and p72 for degradation. Furthermore, nanobody-based trim-aways exhibit robust viral structural protein degradation capabilities in ASFV-infected iPAM and MA104 cells through both proteasomal and lysosomal pathways, concurrently demonstrating potent anti-ASFV activity with less viral production. Our study highlights the Nanobody-based TRIM-away targeting viral protein degradation as a potential candidate for the development of a novel antiviral strategy against ASF.</div></div>\",\"PeriodicalId\":23666,\"journal\":{\"name\":\"Virology\",\"volume\":\"600 \",\"pages\":\"Article 110283\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042682224003076\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682224003076","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
A Nanobody-based TRIM-away targets the intracellular protein degradation of African swine fever virus
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a hemorrhagic illness with high fatality rates in domestic pigs that has resulted in a substantial socio-economic loss and threatens the global pork industry. Very few safe and efficient vaccines or compounds against ASF are commercially available, thus developing new antiviral strategies is urgently required. Targeted protein degradation (TPD) has emerged as one of the most innovative strategies for drug discovery. In this study, we generate Nanobody-based TRIM-aways specifically binding with and targeting ASFV-encoded structural proteins p30, p54, and p72 for degradation. Furthermore, nanobody-based trim-aways exhibit robust viral structural protein degradation capabilities in ASFV-infected iPAM and MA104 cells through both proteasomal and lysosomal pathways, concurrently demonstrating potent anti-ASFV activity with less viral production. Our study highlights the Nanobody-based TRIM-away targeting viral protein degradation as a potential candidate for the development of a novel antiviral strategy against ASF.
期刊介绍:
The journal features articles on virus replication, virus-host biology, viral pathogenesis, immunity to viruses, virus structure, and virus evolution and ecology. We aim to publish papers that provide advances to the understanding of virus biology.