Aude Angelini, Grecia Garcia Marquez, Anna Malovannaya, Marta L Fiorotto, Alexander Saltzman, Antrix Jain, Jo Ann Trial, George E Taffet, Katarzyna A Cieslik
{"title":"衰老心脏对富含谷胱甘肽前体饮食的反应存在性别差异","authors":"Aude Angelini, Grecia Garcia Marquez, Anna Malovannaya, Marta L Fiorotto, Alexander Saltzman, Antrix Jain, Jo Ann Trial, George E Taffet, Katarzyna A Cieslik","doi":"10.1093/gerona/glae258","DOIUrl":null,"url":null,"abstract":"<p><p>Common features of the aging heart are dysregulated metabolism, inflammation, and fibrosis. Elevated oxidative stress is another hallmark of cardiac aging that can exacerbate each of these conditions. We hypothesize that by increasing natural antioxidant levels (glutathione), we will improve cardiac function. Twenty-one-month-old mice were fed Glycine and N-Acetyl Cysteine (GlyNAC) (glutathione precursors)-supplemented or control diets for 12 weeks. Heart function was monitored longitudinally, and the exercise performance was determined at the end of the study. We found that the GlyNAC diet was beneficial for old male but not old female mice, leading to an increase of Ndufb8 expression (a subunit of the mitochondrial respiratory chain complex), and higher enzymatic activity for CPT1b and CrAT, two carnitine acyltransferases that are critical to cardiomyocyte metabolism. Although no quantifiable change of collagen turnover was detected, hearts from GlyNAC-fed old males exhibited a slight but significant enrichment in Fmod, a protein that can inhibit collagen fibril formation, possibly reducing extracellular matrix (ECM) stiffness and thus improving diastolic function. Cardiac diastolic function was modestly improved in males but not females, and surprisingly GlyNAC-fed female mice showed a decline in exercise performance. In summary, our work supports the concept that aged male and female hearts are phenotypically different. These basic differences may affect the response to pharmacological and diet interventions, including antioxidants.</p>","PeriodicalId":94243,"journal":{"name":"The journals of gerontology. Series A, Biological sciences and medical sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex Differences in Response to Diet Enriched with Glutathione Precursors in the Aging Heart.\",\"authors\":\"Aude Angelini, Grecia Garcia Marquez, Anna Malovannaya, Marta L Fiorotto, Alexander Saltzman, Antrix Jain, Jo Ann Trial, George E Taffet, Katarzyna A Cieslik\",\"doi\":\"10.1093/gerona/glae258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Common features of the aging heart are dysregulated metabolism, inflammation, and fibrosis. Elevated oxidative stress is another hallmark of cardiac aging that can exacerbate each of these conditions. We hypothesize that by increasing natural antioxidant levels (glutathione), we will improve cardiac function. Twenty-one-month-old mice were fed Glycine and N-Acetyl Cysteine (GlyNAC) (glutathione precursors)-supplemented or control diets for 12 weeks. Heart function was monitored longitudinally, and the exercise performance was determined at the end of the study. We found that the GlyNAC diet was beneficial for old male but not old female mice, leading to an increase of Ndufb8 expression (a subunit of the mitochondrial respiratory chain complex), and higher enzymatic activity for CPT1b and CrAT, two carnitine acyltransferases that are critical to cardiomyocyte metabolism. Although no quantifiable change of collagen turnover was detected, hearts from GlyNAC-fed old males exhibited a slight but significant enrichment in Fmod, a protein that can inhibit collagen fibril formation, possibly reducing extracellular matrix (ECM) stiffness and thus improving diastolic function. Cardiac diastolic function was modestly improved in males but not females, and surprisingly GlyNAC-fed female mice showed a decline in exercise performance. In summary, our work supports the concept that aged male and female hearts are phenotypically different. These basic differences may affect the response to pharmacological and diet interventions, including antioxidants.</p>\",\"PeriodicalId\":94243,\"journal\":{\"name\":\"The journals of gerontology. Series A, Biological sciences and medical sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journals of gerontology. Series A, Biological sciences and medical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gerona/glae258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journals of gerontology. Series A, Biological sciences and medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glae258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sex Differences in Response to Diet Enriched with Glutathione Precursors in the Aging Heart.
Common features of the aging heart are dysregulated metabolism, inflammation, and fibrosis. Elevated oxidative stress is another hallmark of cardiac aging that can exacerbate each of these conditions. We hypothesize that by increasing natural antioxidant levels (glutathione), we will improve cardiac function. Twenty-one-month-old mice were fed Glycine and N-Acetyl Cysteine (GlyNAC) (glutathione precursors)-supplemented or control diets for 12 weeks. Heart function was monitored longitudinally, and the exercise performance was determined at the end of the study. We found that the GlyNAC diet was beneficial for old male but not old female mice, leading to an increase of Ndufb8 expression (a subunit of the mitochondrial respiratory chain complex), and higher enzymatic activity for CPT1b and CrAT, two carnitine acyltransferases that are critical to cardiomyocyte metabolism. Although no quantifiable change of collagen turnover was detected, hearts from GlyNAC-fed old males exhibited a slight but significant enrichment in Fmod, a protein that can inhibit collagen fibril formation, possibly reducing extracellular matrix (ECM) stiffness and thus improving diastolic function. Cardiac diastolic function was modestly improved in males but not females, and surprisingly GlyNAC-fed female mice showed a decline in exercise performance. In summary, our work supports the concept that aged male and female hearts are phenotypically different. These basic differences may affect the response to pharmacological and diet interventions, including antioxidants.