Qingqin Huang, Yu-Ping Tang, Chao-Gang Zhang, Zhen Wang* and Lei Dai*,
{"title":"通过不对称有机催化实现螺旋手性分子的对映选择性合成","authors":"Qingqin Huang, Yu-Ping Tang, Chao-Gang Zhang, Zhen Wang* and Lei Dai*, ","doi":"10.1021/acscatal.4c0534510.1021/acscatal.4c05345","DOIUrl":null,"url":null,"abstract":"<p >Helical systems have attracted considerable interest across multiple scientific fields due to not only their essential roles in biological processes but also their potential to unveil chirality-associated phenomena, properties, and functionalities. Today, the distinctive topologies of helicenes have found extensive applications in materials science, molecular recognition, and asymmetric catalysis owing to their structural diversity and unique optical and electronic characteristics. Nonetheless, in contrast to the advancements in the synthesis of optically pure point-chiral and axially chiral compounds, the catalytic enantioselective assembly of helically chiral molecules remains in its nascent stages. This Perspective delves into the latest developments in the organocatalytic asymmetric synthesis of helically chiral compounds, emphasizing both the strengths and limitations of the existing literature, with perspectives on the remaining challenges within the field. It is expected that this Perspective will serve as a catalyst for innovation, inspiring the creation of more efficient strategies to synthesize helically chiral molecules.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 21","pages":"16256–16265 16256–16265"},"PeriodicalIF":11.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enantioselective Synthesis of Helically Chiral Molecules Enabled by Asymmetric Organocatalysis\",\"authors\":\"Qingqin Huang, Yu-Ping Tang, Chao-Gang Zhang, Zhen Wang* and Lei Dai*, \",\"doi\":\"10.1021/acscatal.4c0534510.1021/acscatal.4c05345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Helical systems have attracted considerable interest across multiple scientific fields due to not only their essential roles in biological processes but also their potential to unveil chirality-associated phenomena, properties, and functionalities. Today, the distinctive topologies of helicenes have found extensive applications in materials science, molecular recognition, and asymmetric catalysis owing to their structural diversity and unique optical and electronic characteristics. Nonetheless, in contrast to the advancements in the synthesis of optically pure point-chiral and axially chiral compounds, the catalytic enantioselective assembly of helically chiral molecules remains in its nascent stages. This Perspective delves into the latest developments in the organocatalytic asymmetric synthesis of helically chiral compounds, emphasizing both the strengths and limitations of the existing literature, with perspectives on the remaining challenges within the field. It is expected that this Perspective will serve as a catalyst for innovation, inspiring the creation of more efficient strategies to synthesize helically chiral molecules.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"14 21\",\"pages\":\"16256–16265 16256–16265\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.4c05345\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c05345","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Enantioselective Synthesis of Helically Chiral Molecules Enabled by Asymmetric Organocatalysis
Helical systems have attracted considerable interest across multiple scientific fields due to not only their essential roles in biological processes but also their potential to unveil chirality-associated phenomena, properties, and functionalities. Today, the distinctive topologies of helicenes have found extensive applications in materials science, molecular recognition, and asymmetric catalysis owing to their structural diversity and unique optical and electronic characteristics. Nonetheless, in contrast to the advancements in the synthesis of optically pure point-chiral and axially chiral compounds, the catalytic enantioselective assembly of helically chiral molecules remains in its nascent stages. This Perspective delves into the latest developments in the organocatalytic asymmetric synthesis of helically chiral compounds, emphasizing both the strengths and limitations of the existing literature, with perspectives on the remaining challenges within the field. It is expected that this Perspective will serve as a catalyst for innovation, inspiring the creation of more efficient strategies to synthesize helically chiral molecules.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.