{"title":"单细胞线粒体 DNA 测序:方法与应用","authors":"Guoqiang Zhou , Zhenglong Gu , Jin Xu","doi":"10.1016/j.mitoco.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondria play a pivotal role in cellular energetics, metabolism, and various regulatory processes. Their dysregulation is implicated in numerous diseases. Traditional population-level mitochondrial DNA (mtDNA) sequencing often obscures crucial information from individual cells, leading to a limited understanding of mitochondrial genetics. In contrast, single-cell mtDNA sequencing enables the precise detection and characterization of mtDNA mutations at the individual cell level, providing a nuanced view of mitochondrial heteroplasmy and its dynamics. This review aims to provide a comprehensive overview of current single-cell mtDNA sequencing methodologies and their applications in advancing our understanding of mitochondrial genetics.</div></div>","PeriodicalId":100931,"journal":{"name":"Mitochondrial Communications","volume":"2 ","pages":"Pages 107-113"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell mitochondrial DNA sequencing: Methodologies and applications\",\"authors\":\"Guoqiang Zhou , Zhenglong Gu , Jin Xu\",\"doi\":\"10.1016/j.mitoco.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mitochondria play a pivotal role in cellular energetics, metabolism, and various regulatory processes. Their dysregulation is implicated in numerous diseases. Traditional population-level mitochondrial DNA (mtDNA) sequencing often obscures crucial information from individual cells, leading to a limited understanding of mitochondrial genetics. In contrast, single-cell mtDNA sequencing enables the precise detection and characterization of mtDNA mutations at the individual cell level, providing a nuanced view of mitochondrial heteroplasmy and its dynamics. This review aims to provide a comprehensive overview of current single-cell mtDNA sequencing methodologies and their applications in advancing our understanding of mitochondrial genetics.</div></div>\",\"PeriodicalId\":100931,\"journal\":{\"name\":\"Mitochondrial Communications\",\"volume\":\"2 \",\"pages\":\"Pages 107-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590279224000117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590279224000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-cell mitochondrial DNA sequencing: Methodologies and applications
Mitochondria play a pivotal role in cellular energetics, metabolism, and various regulatory processes. Their dysregulation is implicated in numerous diseases. Traditional population-level mitochondrial DNA (mtDNA) sequencing often obscures crucial information from individual cells, leading to a limited understanding of mitochondrial genetics. In contrast, single-cell mtDNA sequencing enables the precise detection and characterization of mtDNA mutations at the individual cell level, providing a nuanced view of mitochondrial heteroplasmy and its dynamics. This review aims to provide a comprehensive overview of current single-cell mtDNA sequencing methodologies and their applications in advancing our understanding of mitochondrial genetics.