Amjad Slika , Christina Haydar , Joelle Bou Chacra , Seba Al Alam , Stephanie Mehanna , Anthony Lteif , Maria George Elias , Krishant M. Deo , Robin I. Taleb , Janice R. Aldrich-Wright , Costantine F. Daher
{"title":"揭示两种铂(IV)配合物在皮肤癌中的化疗潜力:体外和体内观察","authors":"Amjad Slika , Christina Haydar , Joelle Bou Chacra , Seba Al Alam , Stephanie Mehanna , Anthony Lteif , Maria George Elias , Krishant M. Deo , Robin I. Taleb , Janice R. Aldrich-Wright , Costantine F. Daher","doi":"10.1016/j.crphar.2024.100205","DOIUrl":null,"url":null,"abstract":"<div><div>The present study investigates the chemotherapeutic potential of two platinum (IV) complexes, P-PENT and P-HEX, against skin cancer <em>in vitro and in vivo</em>. Both complexes exhibited potent cytotoxicity against HaCaT-II-4 cells with IC<sub>50</sub> values of 0.8 ± 0.08 μM and 1.3 ± 0.16 μM respectively, while demonstrating 8-10-fold selectivity compared to mesenchymal stem cells (MSCs). Western blot analysis revealed significant modulation of key apoptotic and survival pathways, including upregulation of Bax/Bcl2 ratio, cleaved caspase 3, and cytochrome <em>c</em>, suggesting induction of intrinsic apoptosis. The complexes also inhibited PI3K and MAPK pathways, as evidenced by decreased p-AKT/AKT and p-ERK/ERK ratios. Flow cytometry confirmed significant apoptotic cell death. Both complexes also increased reactive oxygen species production. In a DMBA/TPA-induced skin carcinogenesis mouse model, both complexes significantly suppressed tumor growth at doses considerably lower than the maximum tolerated dose, with no detectable toxicity. A dose escalation study in BALB/c mice showed that P-PENT and P-HEX were approximately 5-fold and 4-fold more tolerated than cisplatin, respectively. In conclusion, the present study provides evidence that P-PENT and P-HEX may have the characteristics of an effective and potentially safe anti-tumor drug that could be used in skin cancer treatment.</div></div>","PeriodicalId":10877,"journal":{"name":"Current Research in Pharmacology and Drug Discovery","volume":"7 ","pages":"Article 100205"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the chemotherapeutic potential of two platinum(IV) complexes in skin cancer: in vitro and in vivo Insights\",\"authors\":\"Amjad Slika , Christina Haydar , Joelle Bou Chacra , Seba Al Alam , Stephanie Mehanna , Anthony Lteif , Maria George Elias , Krishant M. Deo , Robin I. Taleb , Janice R. Aldrich-Wright , Costantine F. Daher\",\"doi\":\"10.1016/j.crphar.2024.100205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study investigates the chemotherapeutic potential of two platinum (IV) complexes, P-PENT and P-HEX, against skin cancer <em>in vitro and in vivo</em>. Both complexes exhibited potent cytotoxicity against HaCaT-II-4 cells with IC<sub>50</sub> values of 0.8 ± 0.08 μM and 1.3 ± 0.16 μM respectively, while demonstrating 8-10-fold selectivity compared to mesenchymal stem cells (MSCs). Western blot analysis revealed significant modulation of key apoptotic and survival pathways, including upregulation of Bax/Bcl2 ratio, cleaved caspase 3, and cytochrome <em>c</em>, suggesting induction of intrinsic apoptosis. The complexes also inhibited PI3K and MAPK pathways, as evidenced by decreased p-AKT/AKT and p-ERK/ERK ratios. Flow cytometry confirmed significant apoptotic cell death. Both complexes also increased reactive oxygen species production. In a DMBA/TPA-induced skin carcinogenesis mouse model, both complexes significantly suppressed tumor growth at doses considerably lower than the maximum tolerated dose, with no detectable toxicity. A dose escalation study in BALB/c mice showed that P-PENT and P-HEX were approximately 5-fold and 4-fold more tolerated than cisplatin, respectively. In conclusion, the present study provides evidence that P-PENT and P-HEX may have the characteristics of an effective and potentially safe anti-tumor drug that could be used in skin cancer treatment.</div></div>\",\"PeriodicalId\":10877,\"journal\":{\"name\":\"Current Research in Pharmacology and Drug Discovery\",\"volume\":\"7 \",\"pages\":\"Article 100205\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Pharmacology and Drug Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590257124000324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Pharmacology and Drug Discovery","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590257124000324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Unveiling the chemotherapeutic potential of two platinum(IV) complexes in skin cancer: in vitro and in vivo Insights
The present study investigates the chemotherapeutic potential of two platinum (IV) complexes, P-PENT and P-HEX, against skin cancer in vitro and in vivo. Both complexes exhibited potent cytotoxicity against HaCaT-II-4 cells with IC50 values of 0.8 ± 0.08 μM and 1.3 ± 0.16 μM respectively, while demonstrating 8-10-fold selectivity compared to mesenchymal stem cells (MSCs). Western blot analysis revealed significant modulation of key apoptotic and survival pathways, including upregulation of Bax/Bcl2 ratio, cleaved caspase 3, and cytochrome c, suggesting induction of intrinsic apoptosis. The complexes also inhibited PI3K and MAPK pathways, as evidenced by decreased p-AKT/AKT and p-ERK/ERK ratios. Flow cytometry confirmed significant apoptotic cell death. Both complexes also increased reactive oxygen species production. In a DMBA/TPA-induced skin carcinogenesis mouse model, both complexes significantly suppressed tumor growth at doses considerably lower than the maximum tolerated dose, with no detectable toxicity. A dose escalation study in BALB/c mice showed that P-PENT and P-HEX were approximately 5-fold and 4-fold more tolerated than cisplatin, respectively. In conclusion, the present study provides evidence that P-PENT and P-HEX may have the characteristics of an effective and potentially safe anti-tumor drug that could be used in skin cancer treatment.