基于机器学习的非侵入式水监测框架和开源软件

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-10-18 DOI:10.1016/j.envsoft.2024.106247
Marie-Philine Gross , Riccardo Taormina , Andrea Cominola
{"title":"基于机器学习的非侵入式水监测框架和开源软件","authors":"Marie-Philine Gross ,&nbsp;Riccardo Taormina ,&nbsp;Andrea Cominola","doi":"10.1016/j.envsoft.2024.106247","DOIUrl":null,"url":null,"abstract":"<div><div>Recent research highlights the potential of consumption-based feedback for water conservation, emphasizing the need for Non Intrusive Water Monitoring (NIWM). However, existing NIWM studies often rely on small datasets, a pre-selected class of models, and inaccessible software. Here, we introduce PyNIWM, a machine learning-based open-source Python framework for NIWM. PyNIWM enables water end-use classification via (i) data characterization and feature engineering, (ii) water end-use event classification with four machine learning classifiers, and (iii) performance assessment. We demonstrate PyNIWM on a real-world dataset containing around 800,000 labeled end-use events from 762 homes across the USA and Canada. The four PyNIWM classifiers achieve F1 scores above 0.85, indicating high suitability for water end-use classification. However, a tradeoff between accuracy and computational cost exists. Finally, data balancing through oversampling enhances classification of low-represented end-use classes, but does not improve overall classification. We release PyNIWM as an open-source software, aiming for collaborative and reproducible research.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"183 ","pages":"Article 106247"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning-based framework and open-source software for Non Intrusive Water Monitoring\",\"authors\":\"Marie-Philine Gross ,&nbsp;Riccardo Taormina ,&nbsp;Andrea Cominola\",\"doi\":\"10.1016/j.envsoft.2024.106247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent research highlights the potential of consumption-based feedback for water conservation, emphasizing the need for Non Intrusive Water Monitoring (NIWM). However, existing NIWM studies often rely on small datasets, a pre-selected class of models, and inaccessible software. Here, we introduce PyNIWM, a machine learning-based open-source Python framework for NIWM. PyNIWM enables water end-use classification via (i) data characterization and feature engineering, (ii) water end-use event classification with four machine learning classifiers, and (iii) performance assessment. We demonstrate PyNIWM on a real-world dataset containing around 800,000 labeled end-use events from 762 homes across the USA and Canada. The four PyNIWM classifiers achieve F1 scores above 0.85, indicating high suitability for water end-use classification. However, a tradeoff between accuracy and computational cost exists. Finally, data balancing through oversampling enhances classification of low-represented end-use classes, but does not improve overall classification. We release PyNIWM as an open-source software, aiming for collaborative and reproducible research.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"183 \",\"pages\":\"Article 106247\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815224003086\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224003086","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究强调了基于消耗量的节水反馈的潜力,强调了非侵入式水资源监测(NIWM)的必要性。然而,现有的非侵入式水监测研究通常依赖于小型数据集、预选的模型类别和不可访问的软件。在此,我们介绍 PyNIWM,这是一个基于机器学习的开源 Python 框架,适用于 NIWM。PyNIWM 可通过 (i) 数据特征描述和特征工程,(ii) 使用四个机器学习分类器进行水终端使用事件分类,以及 (iii) 性能评估来实现水终端使用分类。我们在一个真实世界的数据集上演示了 PyNIWM,该数据集包含来自美国和加拿大 762 个家庭的约 800,000 个标记的终端使用事件。四个 PyNIWM 分类器的 F1 分数都超过了 0.85,这表明它们非常适合水的终端使用分类。不过,在准确性和计算成本之间存在权衡。最后,通过超采样来平衡数据可以增强对低代表性最终用途类别的分类,但并不能改善整体分类效果。我们将 PyNIWM 作为开源软件发布,旨在促进合作和可复制的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning-based framework and open-source software for Non Intrusive Water Monitoring
Recent research highlights the potential of consumption-based feedback for water conservation, emphasizing the need for Non Intrusive Water Monitoring (NIWM). However, existing NIWM studies often rely on small datasets, a pre-selected class of models, and inaccessible software. Here, we introduce PyNIWM, a machine learning-based open-source Python framework for NIWM. PyNIWM enables water end-use classification via (i) data characterization and feature engineering, (ii) water end-use event classification with four machine learning classifiers, and (iii) performance assessment. We demonstrate PyNIWM on a real-world dataset containing around 800,000 labeled end-use events from 762 homes across the USA and Canada. The four PyNIWM classifiers achieve F1 scores above 0.85, indicating high suitability for water end-use classification. However, a tradeoff between accuracy and computational cost exists. Finally, data balancing through oversampling enhances classification of low-represented end-use classes, but does not improve overall classification. We release PyNIWM as an open-source software, aiming for collaborative and reproducible research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
QGIS Shoreline Change Analysis Tool (QSCAT): A fast, open-source shoreline change analysis plugin for QGIS Probability analysis of shallow landslides in varying vegetation zones with random soil grain-size distribution Variable sensitivity analysis in groundwater level projections under climate change adopting a hybrid machine learning algorithm Taxonomy of purposes, methods, and recommendations for vulnerability analysis Canopy height Mapper: A google earth engine application for predicting global canopy heights combining GEDI with multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1