微反应器的技术、设计和应用进展--综述

IF 3.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Progress in Nuclear Energy Pub Date : 2024-11-02 DOI:10.1016/j.pnucene.2024.105520
Timothy G. Lane, Shripad T. Revankar
{"title":"微反应器的技术、设计和应用进展--综述","authors":"Timothy G. Lane,&nbsp;Shripad T. Revankar","doi":"10.1016/j.pnucene.2024.105520","DOIUrl":null,"url":null,"abstract":"<div><div>A group of small nuclear reactors that are less than 20 MWe are often referred to as microreactors. This review provides recent advances in the nuclear reactor fuel and core design technology leading to compact microreactor designs, design features, types of microreactors currently considered in the industry and studied by researcher, regulatory design criteria, and deployment potentials for these new microreactors. This review indicates that there are a wide variety of microreactor designs being developed, some of which use coolant other than water such as liquid metal (e.g., sodium), helium gas or molten salt in order to achieve their operational objectives. Some of these designs utilize passive heat pipes in order to transfer heat from the reactor cores. Others make use of helium gas due to its compatibility at high temperature and inert nature. Currently there are no operating reactors which utilize either of these technologies for power generation. To aid the technology commercialization the nuclear regulatory bodies like US NRC are developing new design criteria and the licensing process to assess the microreactors for design certification, construction, and operation. The review indicates that there are potential design criteria challenges for the microreactors. For example, helium reactors need to show that the heat can be dispersed efficiently and passively, and the heat pipe reactors need to demonstrate that the coolant in their heat pipes will not escape the primary boundary. The US NRC has developed design criteria for microreactors are highlighted in the review.</div></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":"178 ","pages":"Article 105520"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in technology, design and deployment of microreactors- a review\",\"authors\":\"Timothy G. Lane,&nbsp;Shripad T. Revankar\",\"doi\":\"10.1016/j.pnucene.2024.105520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A group of small nuclear reactors that are less than 20 MWe are often referred to as microreactors. This review provides recent advances in the nuclear reactor fuel and core design technology leading to compact microreactor designs, design features, types of microreactors currently considered in the industry and studied by researcher, regulatory design criteria, and deployment potentials for these new microreactors. This review indicates that there are a wide variety of microreactor designs being developed, some of which use coolant other than water such as liquid metal (e.g., sodium), helium gas or molten salt in order to achieve their operational objectives. Some of these designs utilize passive heat pipes in order to transfer heat from the reactor cores. Others make use of helium gas due to its compatibility at high temperature and inert nature. Currently there are no operating reactors which utilize either of these technologies for power generation. To aid the technology commercialization the nuclear regulatory bodies like US NRC are developing new design criteria and the licensing process to assess the microreactors for design certification, construction, and operation. The review indicates that there are potential design criteria challenges for the microreactors. For example, helium reactors need to show that the heat can be dispersed efficiently and passively, and the heat pipe reactors need to demonstrate that the coolant in their heat pipes will not escape the primary boundary. The US NRC has developed design criteria for microreactors are highlighted in the review.</div></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":\"178 \",\"pages\":\"Article 105520\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024004700\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024004700","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一组小于 20 兆瓦的小型核反应堆通常被称为微堆。本综述介绍了核反应堆燃料和堆芯设计技术的最新进展,包括紧凑型微堆设计、设计特点、目前业界考虑和研究人员研究的微堆类型、监管设计标准以及这些新型微堆的部署潜力。综述显示,目前正在开发的微反应器设计种类繁多,其中一些设计使用水以外的冷却剂,如液态金属(如钠)、氦气或熔盐,以实现其运行目标。其中一些设计利用无源热管来传递反应堆堆芯的热量。其他设计则利用氦气,因为氦气在高温下具有兼容性和惰性。目前,还没有利用这两种技术发电的运行反应堆。为了帮助技术商业化,美国核管制委员会等核监管机构正在制定新的设计标准和许可程序,以评估微反应器的设计认证、建造和运行。审查表明,微反应器在设计标准方面存在潜在挑战。例如,氦反应器需要证明热量可以有效和被动地分散,热管反应器需要证明其热管中的冷却剂不会从主边界逃逸。美国国家核管制委员会已制定了微反应器设计标准,并在审查中作了重点介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in technology, design and deployment of microreactors- a review
A group of small nuclear reactors that are less than 20 MWe are often referred to as microreactors. This review provides recent advances in the nuclear reactor fuel and core design technology leading to compact microreactor designs, design features, types of microreactors currently considered in the industry and studied by researcher, regulatory design criteria, and deployment potentials for these new microreactors. This review indicates that there are a wide variety of microreactor designs being developed, some of which use coolant other than water such as liquid metal (e.g., sodium), helium gas or molten salt in order to achieve their operational objectives. Some of these designs utilize passive heat pipes in order to transfer heat from the reactor cores. Others make use of helium gas due to its compatibility at high temperature and inert nature. Currently there are no operating reactors which utilize either of these technologies for power generation. To aid the technology commercialization the nuclear regulatory bodies like US NRC are developing new design criteria and the licensing process to assess the microreactors for design certification, construction, and operation. The review indicates that there are potential design criteria challenges for the microreactors. For example, helium reactors need to show that the heat can be dispersed efficiently and passively, and the heat pipe reactors need to demonstrate that the coolant in their heat pipes will not escape the primary boundary. The US NRC has developed design criteria for microreactors are highlighted in the review.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Nuclear Energy
Progress in Nuclear Energy 工程技术-核科学技术
CiteScore
5.30
自引率
14.80%
发文量
331
审稿时长
3.5 months
期刊介绍: Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field. Please note the following: 1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy. 2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc. 3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.
期刊最新文献
Editorial Board Nonlinear vibrations analysis of a fuel rod in nuclear heating reactor Experimental and model development of lead-bismuth eutectic solidification phenomenon flowing inside the tube Machine learning in critical heat flux studies in nuclear systems: A detailed review Experimental study of three-dimensional trajectory and dynamic characteristics of rising bubbles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1