Feiniu Yuan , Guiqian Wang , Qinghua Huang , Xuelong Li
{"title":"用于烟雾语义分割的牛顿插值网络","authors":"Feiniu Yuan , Guiqian Wang , Qinghua Huang , Xuelong Li","doi":"10.1016/j.patcog.2024.111119","DOIUrl":null,"url":null,"abstract":"<div><div>Smoke has large variances of visual appearances that are very adverse to visual segmentation. Furthermore, its semi-transparency often produces highly complicated mixtures of smoke and backgrounds. These factors lead to great difficulties in labelling and segmenting smoke regions. To improve accuracy of smoke segmentation, we propose a Newton Interpolation Network (NINet) for visual smoke semantic segmentation. Unlike simply concatenating or point-wisely adding multi-scale encoded feature maps for information fusion or re-usage, we design a Newton Interpolation Module (NIM) to extract structured information by analyzing the feature values in the same position but from encoded feature maps with different scales. Interpolated features by our NIM contain long-range dependency and semantic structures across different levels, but traditional fusion of multi-scale feature maps cannot model intrinsic structures embedded in these maps. To obtain multi-scale structured information, we repeatedly use the proposed NIM at different levels of the decoding stages. In addition, we use more encoded feature maps to construct a higher order Newton interpolation polynomial for extracting higher order information. Extensive experiments validate that our method significantly outperforms existing state-of-the-art algorithms on virtual and real smoke datasets, and ablation experiments also validate the effectiveness of our NIMs.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111119"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A newton interpolation network for smoke semantic segmentation\",\"authors\":\"Feiniu Yuan , Guiqian Wang , Qinghua Huang , Xuelong Li\",\"doi\":\"10.1016/j.patcog.2024.111119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Smoke has large variances of visual appearances that are very adverse to visual segmentation. Furthermore, its semi-transparency often produces highly complicated mixtures of smoke and backgrounds. These factors lead to great difficulties in labelling and segmenting smoke regions. To improve accuracy of smoke segmentation, we propose a Newton Interpolation Network (NINet) for visual smoke semantic segmentation. Unlike simply concatenating or point-wisely adding multi-scale encoded feature maps for information fusion or re-usage, we design a Newton Interpolation Module (NIM) to extract structured information by analyzing the feature values in the same position but from encoded feature maps with different scales. Interpolated features by our NIM contain long-range dependency and semantic structures across different levels, but traditional fusion of multi-scale feature maps cannot model intrinsic structures embedded in these maps. To obtain multi-scale structured information, we repeatedly use the proposed NIM at different levels of the decoding stages. In addition, we use more encoded feature maps to construct a higher order Newton interpolation polynomial for extracting higher order information. Extensive experiments validate that our method significantly outperforms existing state-of-the-art algorithms on virtual and real smoke datasets, and ablation experiments also validate the effectiveness of our NIMs.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"159 \",\"pages\":\"Article 111119\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008707\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008707","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A newton interpolation network for smoke semantic segmentation
Smoke has large variances of visual appearances that are very adverse to visual segmentation. Furthermore, its semi-transparency often produces highly complicated mixtures of smoke and backgrounds. These factors lead to great difficulties in labelling and segmenting smoke regions. To improve accuracy of smoke segmentation, we propose a Newton Interpolation Network (NINet) for visual smoke semantic segmentation. Unlike simply concatenating or point-wisely adding multi-scale encoded feature maps for information fusion or re-usage, we design a Newton Interpolation Module (NIM) to extract structured information by analyzing the feature values in the same position but from encoded feature maps with different scales. Interpolated features by our NIM contain long-range dependency and semantic structures across different levels, but traditional fusion of multi-scale feature maps cannot model intrinsic structures embedded in these maps. To obtain multi-scale structured information, we repeatedly use the proposed NIM at different levels of the decoding stages. In addition, we use more encoded feature maps to construct a higher order Newton interpolation polynomial for extracting higher order information. Extensive experiments validate that our method significantly outperforms existing state-of-the-art algorithms on virtual and real smoke datasets, and ablation experiments also validate the effectiveness of our NIMs.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.