利用多层感知器人工神经网络(MLP-ANN)预测有机废物生物质暗发酵产生的生物氢

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-10-20 DOI:10.1016/j.compchemeng.2024.108900
Ibrahim Shomope , Muhammad Tawalbeh , Amani Al-Othman , Fares Almomani
{"title":"利用多层感知器人工神经网络(MLP-ANN)预测有机废物生物质暗发酵产生的生物氢","authors":"Ibrahim Shomope ,&nbsp;Muhammad Tawalbeh ,&nbsp;Amani Al-Othman ,&nbsp;Fares Almomani","doi":"10.1016/j.compchemeng.2024.108900","DOIUrl":null,"url":null,"abstract":"<div><div>The focus on sustainable energy has increased interest in biohydrogen production through dark fermentation of organic waste biomass, offering dual benefits of energy production and waste management. Optimizing this process is challenging due to complex interactions among substrate composition, microbial consortia, and fermentation parameters. A multilayer perceptron artificial neural network model was developed to predict biohydrogen yield from organic waste. The model, trained on 180 data points from 35 studies, uses inputs, such as substrate type, inoculum type, concentration, pH, and temperature, with hydrogen yield as the output. The multilayer perceptron artificial neural network model achieved high accuracy, with a root mean square error of 0.3838, a mean absolute percentage error of 0.1938, and a coefficient of determination of 0.8381. These results demonstrate the model's effectiveness in predicting biohydrogen production, providing a valuable tool for optimizing the fermentation process and advancing sustainable energy solutions.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108900"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting biohydrogen production from dark fermentation of organic waste biomass using multilayer perceptron artificial neural network (MLP–ANN)\",\"authors\":\"Ibrahim Shomope ,&nbsp;Muhammad Tawalbeh ,&nbsp;Amani Al-Othman ,&nbsp;Fares Almomani\",\"doi\":\"10.1016/j.compchemeng.2024.108900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The focus on sustainable energy has increased interest in biohydrogen production through dark fermentation of organic waste biomass, offering dual benefits of energy production and waste management. Optimizing this process is challenging due to complex interactions among substrate composition, microbial consortia, and fermentation parameters. A multilayer perceptron artificial neural network model was developed to predict biohydrogen yield from organic waste. The model, trained on 180 data points from 35 studies, uses inputs, such as substrate type, inoculum type, concentration, pH, and temperature, with hydrogen yield as the output. The multilayer perceptron artificial neural network model achieved high accuracy, with a root mean square error of 0.3838, a mean absolute percentage error of 0.1938, and a coefficient of determination of 0.8381. These results demonstrate the model's effectiveness in predicting biohydrogen production, providing a valuable tool for optimizing the fermentation process and advancing sustainable energy solutions.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108900\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424003181\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003181","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对可持续能源的关注增加了人们对通过有机废物生物质暗发酵生产生物氢的兴趣,这种方法具有能源生产和废物管理的双重优势。由于基质成分、微生物群和发酵参数之间存在复杂的相互作用,优化这一过程具有挑战性。我们开发了一个多层感知器人工神经网络模型来预测有机废物的生物氢产量。该模型根据 35 项研究的 180 个数据点进行训练,使用基质类型、接种物类型、浓度、pH 值和温度等输入,以产氢量作为输出。多层感知器人工神经网络模型的准确度很高,均方根误差为 0.3838,平均绝对百分比误差为 0.1938,决定系数为 0.8381。这些结果证明了该模型在预测生物制氢方面的有效性,为优化发酵过程和推进可持续能源解决方案提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting biohydrogen production from dark fermentation of organic waste biomass using multilayer perceptron artificial neural network (MLP–ANN)
The focus on sustainable energy has increased interest in biohydrogen production through dark fermentation of organic waste biomass, offering dual benefits of energy production and waste management. Optimizing this process is challenging due to complex interactions among substrate composition, microbial consortia, and fermentation parameters. A multilayer perceptron artificial neural network model was developed to predict biohydrogen yield from organic waste. The model, trained on 180 data points from 35 studies, uses inputs, such as substrate type, inoculum type, concentration, pH, and temperature, with hydrogen yield as the output. The multilayer perceptron artificial neural network model achieved high accuracy, with a root mean square error of 0.3838, a mean absolute percentage error of 0.1938, and a coefficient of determination of 0.8381. These results demonstrate the model's effectiveness in predicting biohydrogen production, providing a valuable tool for optimizing the fermentation process and advancing sustainable energy solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1