{"title":"电化学机械系统的扩散界面模型","authors":"M. Magri","doi":"10.1016/j.euromechsol.2024.105470","DOIUrl":null,"url":null,"abstract":"<div><div>Electro-chemo-mechanics plays a critical role in the performance and longevity of energy storage systems, such as lithium-ion batteries and hydrogen energy storage. These systems involve multi-material composites comprising both liquid and solid phases, with their behavior influenced by processes in the bulk phases and at their interfaces.</div><div>Traditional multi-phase theoretical and numerical models often adopt a discrete representation of material interfaces, introducing discontinuities in the problem’s fields. The numerical implementation is carried out using special interface elements, a methodology that requires conformal meshes and is not always supported by open-source computing platforms.</div><div>This paper introduces a novel modeling framework that employs a diffuse representation of material interfaces, inspired by the phase-field method. From a modeling perspective, this approach allows for the consistent coupling of bulk and interface electro-chemo-mechanical processes, adhering to thermodynamic principles. Numerically, the proposed model is particularly suited for simulating real material microstructures using regular meshes, facilitating advanced numerical implementations.</div><div>The methodology is detailed for a generic multi-material electro-chemo-mechanical system and applied specifically to Li-ion batteries. Numerical examples demonstrate the model’s effectiveness in simulating coupled interface processes without resorting to interface elements. This work provides a significant advancement in the simulation of electro-chemo-mechanical systems, offering a robust tool for studying the complex interplay of bulk and interface processes.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"109 ","pages":"Article 105470"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A diffuse interface model for electro-chemo-mechanical systems\",\"authors\":\"M. Magri\",\"doi\":\"10.1016/j.euromechsol.2024.105470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electro-chemo-mechanics plays a critical role in the performance and longevity of energy storage systems, such as lithium-ion batteries and hydrogen energy storage. These systems involve multi-material composites comprising both liquid and solid phases, with their behavior influenced by processes in the bulk phases and at their interfaces.</div><div>Traditional multi-phase theoretical and numerical models often adopt a discrete representation of material interfaces, introducing discontinuities in the problem’s fields. The numerical implementation is carried out using special interface elements, a methodology that requires conformal meshes and is not always supported by open-source computing platforms.</div><div>This paper introduces a novel modeling framework that employs a diffuse representation of material interfaces, inspired by the phase-field method. From a modeling perspective, this approach allows for the consistent coupling of bulk and interface electro-chemo-mechanical processes, adhering to thermodynamic principles. Numerically, the proposed model is particularly suited for simulating real material microstructures using regular meshes, facilitating advanced numerical implementations.</div><div>The methodology is detailed for a generic multi-material electro-chemo-mechanical system and applied specifically to Li-ion batteries. Numerical examples demonstrate the model’s effectiveness in simulating coupled interface processes without resorting to interface elements. This work provides a significant advancement in the simulation of electro-chemo-mechanical systems, offering a robust tool for studying the complex interplay of bulk and interface processes.</div></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"109 \",\"pages\":\"Article 105470\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S099775382400250X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S099775382400250X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
A diffuse interface model for electro-chemo-mechanical systems
Electro-chemo-mechanics plays a critical role in the performance and longevity of energy storage systems, such as lithium-ion batteries and hydrogen energy storage. These systems involve multi-material composites comprising both liquid and solid phases, with their behavior influenced by processes in the bulk phases and at their interfaces.
Traditional multi-phase theoretical and numerical models often adopt a discrete representation of material interfaces, introducing discontinuities in the problem’s fields. The numerical implementation is carried out using special interface elements, a methodology that requires conformal meshes and is not always supported by open-source computing platforms.
This paper introduces a novel modeling framework that employs a diffuse representation of material interfaces, inspired by the phase-field method. From a modeling perspective, this approach allows for the consistent coupling of bulk and interface electro-chemo-mechanical processes, adhering to thermodynamic principles. Numerically, the proposed model is particularly suited for simulating real material microstructures using regular meshes, facilitating advanced numerical implementations.
The methodology is detailed for a generic multi-material electro-chemo-mechanical system and applied specifically to Li-ion batteries. Numerical examples demonstrate the model’s effectiveness in simulating coupled interface processes without resorting to interface elements. This work provides a significant advancement in the simulation of electro-chemo-mechanical systems, offering a robust tool for studying the complex interplay of bulk and interface processes.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.