{"title":"高强度钢纵向板与管 X 接头的实验测试和塑性应变分析","authors":"Ihyun Ryu , Seon-Hu Kim , Cheol-Ho Lee","doi":"10.1016/j.tws.2024.112573","DOIUrl":null,"url":null,"abstract":"<div><div>Applying high strength steels to tubular joints can increase the propensity to fracture failure due to their lower ductility. However, to simulate the fracture behavior in the finite element (FE) analysis, sophisticated material damage model with rigorous fracture criteria should be incorporated. Recently, the latest draft of ISO 14346 has advocated the use of 5 % strain limit in FE analysis of tubular joints. The strain limit concept has been further developed by the authors’ previous work, for its use as a practical alternative to the complicated material damage model. Specifically, a lowered limit of 2.5 % was recommended for longitudinal plate to circular hollow section (CHS) joints subjected to in-plane bending. This study extends the strain limit investigation to longitudinal plate to tubular X joints subjected to tensile loads. An experimental program is first presented which included both CHS and rectangular hollow section (RHS) chord members fabricated from two high strength steels with nominal yield stresses of 460 MPa and 700 MPa. Based on test-validated supplemental numerical analyses, it is suggested that the joint load corresponding to 2.5 % strain limit can be taken as the load-bearing capacity to suppress occurrence of a fracture failure for the tubular joint configurations considered in this study.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112573"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental testing and plastic strain analysis of high strength steel longitudinal plate to tubular X joints\",\"authors\":\"Ihyun Ryu , Seon-Hu Kim , Cheol-Ho Lee\",\"doi\":\"10.1016/j.tws.2024.112573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Applying high strength steels to tubular joints can increase the propensity to fracture failure due to their lower ductility. However, to simulate the fracture behavior in the finite element (FE) analysis, sophisticated material damage model with rigorous fracture criteria should be incorporated. Recently, the latest draft of ISO 14346 has advocated the use of 5 % strain limit in FE analysis of tubular joints. The strain limit concept has been further developed by the authors’ previous work, for its use as a practical alternative to the complicated material damage model. Specifically, a lowered limit of 2.5 % was recommended for longitudinal plate to circular hollow section (CHS) joints subjected to in-plane bending. This study extends the strain limit investigation to longitudinal plate to tubular X joints subjected to tensile loads. An experimental program is first presented which included both CHS and rectangular hollow section (RHS) chord members fabricated from two high strength steels with nominal yield stresses of 460 MPa and 700 MPa. Based on test-validated supplemental numerical analyses, it is suggested that the joint load corresponding to 2.5 % strain limit can be taken as the load-bearing capacity to suppress occurrence of a fracture failure for the tubular joint configurations considered in this study.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"206 \",\"pages\":\"Article 112573\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124010139\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010139","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental testing and plastic strain analysis of high strength steel longitudinal plate to tubular X joints
Applying high strength steels to tubular joints can increase the propensity to fracture failure due to their lower ductility. However, to simulate the fracture behavior in the finite element (FE) analysis, sophisticated material damage model with rigorous fracture criteria should be incorporated. Recently, the latest draft of ISO 14346 has advocated the use of 5 % strain limit in FE analysis of tubular joints. The strain limit concept has been further developed by the authors’ previous work, for its use as a practical alternative to the complicated material damage model. Specifically, a lowered limit of 2.5 % was recommended for longitudinal plate to circular hollow section (CHS) joints subjected to in-plane bending. This study extends the strain limit investigation to longitudinal plate to tubular X joints subjected to tensile loads. An experimental program is first presented which included both CHS and rectangular hollow section (RHS) chord members fabricated from two high strength steels with nominal yield stresses of 460 MPa and 700 MPa. Based on test-validated supplemental numerical analyses, it is suggested that the joint load corresponding to 2.5 % strain limit can be taken as the load-bearing capacity to suppress occurrence of a fracture failure for the tubular joint configurations considered in this study.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.