各向异性导电纳米工程复合材料交错层中裂纹检测的机器学习,具有逼真的几何形状

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering Science Pub Date : 2024-11-01 DOI:10.1016/j.ijengsci.2024.104171
Iskander S. Akmanov, Stepan V. Lomov, Mikhail Y. Spasennykh, Sergey G. Abaimov
{"title":"各向异性导电纳米工程复合材料交错层中裂纹检测的机器学习,具有逼真的几何形状","authors":"Iskander S. Akmanov,&nbsp;Stepan V. Lomov,&nbsp;Mikhail Y. Spasennykh,&nbsp;Sergey G. Abaimov","doi":"10.1016/j.ijengsci.2024.104171","DOIUrl":null,"url":null,"abstract":"<div><div>Engineering interleaves of composite laminates with carbon nanotubes (CNTs) improves interlaminar fracture toughness, creating also conductivity, which can be employed for damage identification. The paper explores machine learning (ML) solution of the inverse problem of the defect identification for interleaves with anisotropic conductivity (aligned CNTs). The electrical and geometrical properties of the interleave are assigned based on the synchrotron X-ray computer tomography of glass fibre / epoxy laminates with nanostitch. Several machine learning (ML) models are applied (XGBoost, fully connected (FCNN) and convolution neural (CNN) networks). XGBoost and FCNN algorithms performed poorly, failing to detect smaller defects and giving significant errors for larger ones. CNN algorithm detects defects well: It predicts the geometric characteristics of the defect with error below 16 %.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104171"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning for crack detection in an anisotropic electrically conductive nano-engineered composite interleave with realistic geometry\",\"authors\":\"Iskander S. Akmanov,&nbsp;Stepan V. Lomov,&nbsp;Mikhail Y. Spasennykh,&nbsp;Sergey G. Abaimov\",\"doi\":\"10.1016/j.ijengsci.2024.104171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Engineering interleaves of composite laminates with carbon nanotubes (CNTs) improves interlaminar fracture toughness, creating also conductivity, which can be employed for damage identification. The paper explores machine learning (ML) solution of the inverse problem of the defect identification for interleaves with anisotropic conductivity (aligned CNTs). The electrical and geometrical properties of the interleave are assigned based on the synchrotron X-ray computer tomography of glass fibre / epoxy laminates with nanostitch. Several machine learning (ML) models are applied (XGBoost, fully connected (FCNN) and convolution neural (CNN) networks). XGBoost and FCNN algorithms performed poorly, failing to detect smaller defects and giving significant errors for larger ones. CNN algorithm detects defects well: It predicts the geometric characteristics of the defect with error below 16 %.</div></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"205 \",\"pages\":\"Article 104171\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524001551\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001551","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用碳纳米管(CNTs)对复合材料层压板的交错层进行工程设计,不仅能提高层间断裂韧性,还能提高导电性,可用于损伤识别。本文探讨了各向异性导电性(排列的碳纳米管)交错层缺陷识别逆问题的机器学习(ML)解决方案。交错层的电气和几何特性是根据具有纳米缝隙的玻璃纤维/环氧树脂层压板的同步辐射 X 射线计算机断层扫描来确定的。应用了多种机器学习(ML)模型(XGBoost、全连接(FCNN)和卷积神经(CNN)网络)。XGBoost 和 FCNN 算法表现不佳,无法检测到较小的缺陷,而对较大的缺陷则误差很大。CNN 算法能很好地检测出缺陷:它能预测缺陷的几何特征,误差低于 16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning for crack detection in an anisotropic electrically conductive nano-engineered composite interleave with realistic geometry
Engineering interleaves of composite laminates with carbon nanotubes (CNTs) improves interlaminar fracture toughness, creating also conductivity, which can be employed for damage identification. The paper explores machine learning (ML) solution of the inverse problem of the defect identification for interleaves with anisotropic conductivity (aligned CNTs). The electrical and geometrical properties of the interleave are assigned based on the synchrotron X-ray computer tomography of glass fibre / epoxy laminates with nanostitch. Several machine learning (ML) models are applied (XGBoost, fully connected (FCNN) and convolution neural (CNN) networks). XGBoost and FCNN algorithms performed poorly, failing to detect smaller defects and giving significant errors for larger ones. CNN algorithm detects defects well: It predicts the geometric characteristics of the defect with error below 16 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
期刊最新文献
Elastic active matter — A composite mechanics approach via non-interaction approximation On size-dependent mechanics of Mindlin plates made of polymer networks Eshelby's inhomogeneity model within Mindlin's first strain gradient elasticity theory and its applications in composite materials Editorial Board An energy-based fracture criterion for quasi-brittle crack propagation in micropolar continuum: Analytical and numerical study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1