{"title":"聚(3,4-乙烯二氧噻吩)电极对绿原酸的伏安检测","authors":"Wei-Li Shih, Lin-Chi Chen","doi":"10.1016/j.jelechem.2024.118736","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims at developing selective detection of chlorogenic acid (CGA), a critical phenolic acid related to the antioxidant level and taste of coffee, by a pristine poly(3,4-ethylenedioxythiophene) (PEDOT) electrode. The electrochemical oxidation of CGA on two types of PEDOT films, electrodeposited in aqueous (water, aq-PEDOT) and non-aqueous solvents (acetonitrile, ACN-PEDOT), were systematically studied and compared. Aq-PEDOT film showed a linear response for CGA in a range from 1.5 µM to 2.5 mM and a sensitivity of 0.33 mA/cm<sup>2</sup>⋅mM; ACN-PEDOT film showed a non-linear response with residual CGA. For repeated sensing purposes, we chose aq-PEDOT for the CGA sensor demonstration. Although cross-sensitivity with gallic acid (GA) and caffeic acid (CA) at 0.35 V was observed due to the shared catechol structure, selectivity for CGA determination against vanillin (VAN), guaiacol (GUA), theobromine (THB), theophylline (THP), quinic acid (QA), and caffeine (CAF) was confirmed. The distinct sensing behavior of the PEDOT films was further investigated: aq-PEDOT had a relatively flat surface and obeyed diffusion-controlled kinetics for CGA electro-oxidation. In contrast, ACN-PEDOT had a rougher coral-like morphology and strong adsorption characteristics. The measurements in real coffee samples by aq-PEDOT were also demonstrated with the interference from CA compensated. In brief, this study proves the niches and provides in-depth electrochemical kinetics for voltammetric CGA sensing using the PEDOT films prepared in aqueous and non-aqueous environments.</div></div>","PeriodicalId":355,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voltammetric detection of chlorogenic acid by Poly(3,4-ethylene-dioxythiophene) electrodes\",\"authors\":\"Wei-Li Shih, Lin-Chi Chen\",\"doi\":\"10.1016/j.jelechem.2024.118736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work aims at developing selective detection of chlorogenic acid (CGA), a critical phenolic acid related to the antioxidant level and taste of coffee, by a pristine poly(3,4-ethylenedioxythiophene) (PEDOT) electrode. The electrochemical oxidation of CGA on two types of PEDOT films, electrodeposited in aqueous (water, aq-PEDOT) and non-aqueous solvents (acetonitrile, ACN-PEDOT), were systematically studied and compared. Aq-PEDOT film showed a linear response for CGA in a range from 1.5 µM to 2.5 mM and a sensitivity of 0.33 mA/cm<sup>2</sup>⋅mM; ACN-PEDOT film showed a non-linear response with residual CGA. For repeated sensing purposes, we chose aq-PEDOT for the CGA sensor demonstration. Although cross-sensitivity with gallic acid (GA) and caffeic acid (CA) at 0.35 V was observed due to the shared catechol structure, selectivity for CGA determination against vanillin (VAN), guaiacol (GUA), theobromine (THB), theophylline (THP), quinic acid (QA), and caffeine (CAF) was confirmed. The distinct sensing behavior of the PEDOT films was further investigated: aq-PEDOT had a relatively flat surface and obeyed diffusion-controlled kinetics for CGA electro-oxidation. In contrast, ACN-PEDOT had a rougher coral-like morphology and strong adsorption characteristics. The measurements in real coffee samples by aq-PEDOT were also demonstrated with the interference from CA compensated. In brief, this study proves the niches and provides in-depth electrochemical kinetics for voltammetric CGA sensing using the PEDOT films prepared in aqueous and non-aqueous environments.</div></div>\",\"PeriodicalId\":355,\"journal\":{\"name\":\"Journal of Electroanalytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572665724007148\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665724007148","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Voltammetric detection of chlorogenic acid by Poly(3,4-ethylene-dioxythiophene) electrodes
This work aims at developing selective detection of chlorogenic acid (CGA), a critical phenolic acid related to the antioxidant level and taste of coffee, by a pristine poly(3,4-ethylenedioxythiophene) (PEDOT) electrode. The electrochemical oxidation of CGA on two types of PEDOT films, electrodeposited in aqueous (water, aq-PEDOT) and non-aqueous solvents (acetonitrile, ACN-PEDOT), were systematically studied and compared. Aq-PEDOT film showed a linear response for CGA in a range from 1.5 µM to 2.5 mM and a sensitivity of 0.33 mA/cm2⋅mM; ACN-PEDOT film showed a non-linear response with residual CGA. For repeated sensing purposes, we chose aq-PEDOT for the CGA sensor demonstration. Although cross-sensitivity with gallic acid (GA) and caffeic acid (CA) at 0.35 V was observed due to the shared catechol structure, selectivity for CGA determination against vanillin (VAN), guaiacol (GUA), theobromine (THB), theophylline (THP), quinic acid (QA), and caffeine (CAF) was confirmed. The distinct sensing behavior of the PEDOT films was further investigated: aq-PEDOT had a relatively flat surface and obeyed diffusion-controlled kinetics for CGA electro-oxidation. In contrast, ACN-PEDOT had a rougher coral-like morphology and strong adsorption characteristics. The measurements in real coffee samples by aq-PEDOT were also demonstrated with the interference from CA compensated. In brief, this study proves the niches and provides in-depth electrochemical kinetics for voltammetric CGA sensing using the PEDOT films prepared in aqueous and non-aqueous environments.
期刊介绍:
The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied.
Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.