Hengqian Wang , Lei Chen , Kuangrong Hao , Xin Cai , Bing Wei
{"title":"基于不定变异自动编码器的新型半监督软传感器建模自训练框架","authors":"Hengqian Wang , Lei Chen , Kuangrong Hao , Xin Cai , Bing Wei","doi":"10.1016/j.ins.2024.121565","DOIUrl":null,"url":null,"abstract":"<div><div>In modern industrial processes, the high acquisition cost of labeled data can lead to a large number of unlabeled samples, which greatly impacts the accuracy of traditional soft sensor models. To this end, this paper proposes a novel semi-supervised soft sensor framework that can fully utilize the unlabeled data to expand the original labeled data, and ultimately improve the prediction accuracy. Specifically, an indeterminate variational autoencoder (IVAE) is first proposed to obtain pseudo-labels and their uncertainties for unlabeled data. On this basis, the IVAE-based self-training (ST-IVAE) framework is further naturally proposed to expand the original small labeled dataset through continuous circulation. Among them, a variance-based oversampling (VOS) strategy is introduced to better utilize the pseudo-label uncertainty. By determining similar sample sets through the comparison of Kullback-Leibler (KL) divergence obtained by the proposed IVAE model, each sample can be independently modeled for prediction. The effectiveness of the proposed semi-supervised framework is verified on two real industrial processes. Comparable results illustrate that the ST-IVAE framework can still predict well even in the presence of missing input data compared to state-of-the-art methodologies in addressing semi-supervised soft sensing challenges.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121565"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel self-training framework for semi-supervised soft sensor modeling based on indeterminate variational autoencoder\",\"authors\":\"Hengqian Wang , Lei Chen , Kuangrong Hao , Xin Cai , Bing Wei\",\"doi\":\"10.1016/j.ins.2024.121565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In modern industrial processes, the high acquisition cost of labeled data can lead to a large number of unlabeled samples, which greatly impacts the accuracy of traditional soft sensor models. To this end, this paper proposes a novel semi-supervised soft sensor framework that can fully utilize the unlabeled data to expand the original labeled data, and ultimately improve the prediction accuracy. Specifically, an indeterminate variational autoencoder (IVAE) is first proposed to obtain pseudo-labels and their uncertainties for unlabeled data. On this basis, the IVAE-based self-training (ST-IVAE) framework is further naturally proposed to expand the original small labeled dataset through continuous circulation. Among them, a variance-based oversampling (VOS) strategy is introduced to better utilize the pseudo-label uncertainty. By determining similar sample sets through the comparison of Kullback-Leibler (KL) divergence obtained by the proposed IVAE model, each sample can be independently modeled for prediction. The effectiveness of the proposed semi-supervised framework is verified on two real industrial processes. Comparable results illustrate that the ST-IVAE framework can still predict well even in the presence of missing input data compared to state-of-the-art methodologies in addressing semi-supervised soft sensing challenges.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"690 \",\"pages\":\"Article 121565\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524014798\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524014798","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A novel self-training framework for semi-supervised soft sensor modeling based on indeterminate variational autoencoder
In modern industrial processes, the high acquisition cost of labeled data can lead to a large number of unlabeled samples, which greatly impacts the accuracy of traditional soft sensor models. To this end, this paper proposes a novel semi-supervised soft sensor framework that can fully utilize the unlabeled data to expand the original labeled data, and ultimately improve the prediction accuracy. Specifically, an indeterminate variational autoencoder (IVAE) is first proposed to obtain pseudo-labels and their uncertainties for unlabeled data. On this basis, the IVAE-based self-training (ST-IVAE) framework is further naturally proposed to expand the original small labeled dataset through continuous circulation. Among them, a variance-based oversampling (VOS) strategy is introduced to better utilize the pseudo-label uncertainty. By determining similar sample sets through the comparison of Kullback-Leibler (KL) divergence obtained by the proposed IVAE model, each sample can be independently modeled for prediction. The effectiveness of the proposed semi-supervised framework is verified on two real industrial processes. Comparable results illustrate that the ST-IVAE framework can still predict well even in the presence of missing input data compared to state-of-the-art methodologies in addressing semi-supervised soft sensing challenges.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.