{"title":"利用说话人匿名数据进行多说话人文本到语音训练","authors":"Wen-Chin Huang;Yi-Chiao Wu;Tomoki Toda","doi":"10.1109/LSP.2024.3482701","DOIUrl":null,"url":null,"abstract":"The trend of scaling up speech generation models poses the threat of biometric information leakage of the identities of the voices in the training data, raising privacy and security concerns. In this letter, we investigate the training of multi-speaker text-to-speech (TTS) models using data that underwent speaker anonymization (SA), a process that tends to hide the speaker identity of the input speech while maintaining other attributes. Two signal processing-based and three deep neural network-based SA methods were used to anonymize VCTK, a multi-speaker TTS dataset, which is further used to train an end-to-end TTS model, VITS, to perform unseen speaker TTS during the testing phase. We conducted extensive objective and subjective experiments to evaluate the anonymized training data, as well as the performance of the downstream TTS model trained using those data. Importantly, we found that UTMOS, a data-driven subjective rating predictor model, and GVD, a metric that measures the gain of voice distinctiveness, are good indicators of the downstream TTS performance. We summarize insights in the hope of helping future researchers determine the usefulness of the SA system for multi-speaker TTS training.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2995-2999"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720809","citationCount":"0","resultStr":"{\"title\":\"Multi-Speaker Text-to-Speech Training With Speaker Anonymized Data\",\"authors\":\"Wen-Chin Huang;Yi-Chiao Wu;Tomoki Toda\",\"doi\":\"10.1109/LSP.2024.3482701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trend of scaling up speech generation models poses the threat of biometric information leakage of the identities of the voices in the training data, raising privacy and security concerns. In this letter, we investigate the training of multi-speaker text-to-speech (TTS) models using data that underwent speaker anonymization (SA), a process that tends to hide the speaker identity of the input speech while maintaining other attributes. Two signal processing-based and three deep neural network-based SA methods were used to anonymize VCTK, a multi-speaker TTS dataset, which is further used to train an end-to-end TTS model, VITS, to perform unseen speaker TTS during the testing phase. We conducted extensive objective and subjective experiments to evaluate the anonymized training data, as well as the performance of the downstream TTS model trained using those data. Importantly, we found that UTMOS, a data-driven subjective rating predictor model, and GVD, a metric that measures the gain of voice distinctiveness, are good indicators of the downstream TTS performance. We summarize insights in the hope of helping future researchers determine the usefulness of the SA system for multi-speaker TTS training.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"2995-2999\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720809\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10720809/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720809/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multi-Speaker Text-to-Speech Training With Speaker Anonymized Data
The trend of scaling up speech generation models poses the threat of biometric information leakage of the identities of the voices in the training data, raising privacy and security concerns. In this letter, we investigate the training of multi-speaker text-to-speech (TTS) models using data that underwent speaker anonymization (SA), a process that tends to hide the speaker identity of the input speech while maintaining other attributes. Two signal processing-based and three deep neural network-based SA methods were used to anonymize VCTK, a multi-speaker TTS dataset, which is further used to train an end-to-end TTS model, VITS, to perform unseen speaker TTS during the testing phase. We conducted extensive objective and subjective experiments to evaluate the anonymized training data, as well as the performance of the downstream TTS model trained using those data. Importantly, we found that UTMOS, a data-driven subjective rating predictor model, and GVD, a metric that measures the gain of voice distinctiveness, are good indicators of the downstream TTS performance. We summarize insights in the hope of helping future researchers determine the usefulness of the SA system for multi-speaker TTS training.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.