反思航拍地理定位中的多粒度特征汇集法

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-10-21 DOI:10.1109/LSP.2024.3484330
Tingyu Wang;Zihao Yang;Quan Chen;Yaoqi Sun;Chenggang Yan
{"title":"反思航拍地理定位中的多粒度特征汇集法","authors":"Tingyu Wang;Zihao Yang;Quan Chen;Yaoqi Sun;Chenggang Yan","doi":"10.1109/LSP.2024.3484330","DOIUrl":null,"url":null,"abstract":"Vision-based aerial-view geo-localization aims to match drone- and satellite-views of the same geographical location. Several feature partition strategies divide spatial features to mine contextual information. However, the compression from fine-grained features to visual descriptors is ill-considered, that is, classical pooling destroys discriminative features while increasing the sensitivity of networks to contextual information. In order to clarify this, we first review existing pooling layer and analyze their pros and cons when applied in feature compression. Inspired by the appearance of aerial views, we then summarize an ideal feature compression operation, i.e., precisely highlighting the central target while maximizing the use of environmental information in a feature-smoothing manner. To achieve the above process, we propose a distance-dependent parameter initialization strategy and form a novel pooling called \n<inline-formula><tex-math>$D^{2}$</tex-math></inline-formula>\n-GeM pooling, which can explicitly guide the network to compress fine-grained features in multiple patterns. Extensive experiments on public benchmark University-1652 substantiate that our strategy attains more appealing results without additional costs.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"3005-3009"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking Pooling for Multi-Granularity Features in Aerial-View Geo-Localization\",\"authors\":\"Tingyu Wang;Zihao Yang;Quan Chen;Yaoqi Sun;Chenggang Yan\",\"doi\":\"10.1109/LSP.2024.3484330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision-based aerial-view geo-localization aims to match drone- and satellite-views of the same geographical location. Several feature partition strategies divide spatial features to mine contextual information. However, the compression from fine-grained features to visual descriptors is ill-considered, that is, classical pooling destroys discriminative features while increasing the sensitivity of networks to contextual information. In order to clarify this, we first review existing pooling layer and analyze their pros and cons when applied in feature compression. Inspired by the appearance of aerial views, we then summarize an ideal feature compression operation, i.e., precisely highlighting the central target while maximizing the use of environmental information in a feature-smoothing manner. To achieve the above process, we propose a distance-dependent parameter initialization strategy and form a novel pooling called \\n<inline-formula><tex-math>$D^{2}$</tex-math></inline-formula>\\n-GeM pooling, which can explicitly guide the network to compress fine-grained features in multiple patterns. Extensive experiments on public benchmark University-1652 substantiate that our strategy attains more appealing results without additional costs.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"3005-3009\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10723789/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10723789/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于视觉的航空视图地理定位旨在匹配同一地理位置的无人机视图和卫星视图。有几种特征分割策略可以分割空间特征,挖掘上下文信息。然而,从细粒度特征到视觉描述符的压缩考虑不周,也就是说,经典的池化破坏了判别特征,同时增加了网络对上下文信息的敏感性。为了澄清这一点,我们首先回顾了现有的池化层,并分析了它们在应用于特征压缩时的利弊。受鸟瞰图外观的启发,我们总结了理想的特征压缩操作,即在精确突出中心目标的同时,以特征平滑的方式最大限度地利用环境信息。为了实现上述过程,我们提出了一种与距离相关的参数初始化策略,并形成了一种名为 $D^{2}$-GeM pooling 的新型池化,它可以明确引导网络以多种模式压缩细粒度特征。在公共基准 University-1652 上进行的大量实验证明,我们的策略可以在不增加成本的情况下获得更有吸引力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rethinking Pooling for Multi-Granularity Features in Aerial-View Geo-Localization
Vision-based aerial-view geo-localization aims to match drone- and satellite-views of the same geographical location. Several feature partition strategies divide spatial features to mine contextual information. However, the compression from fine-grained features to visual descriptors is ill-considered, that is, classical pooling destroys discriminative features while increasing the sensitivity of networks to contextual information. In order to clarify this, we first review existing pooling layer and analyze their pros and cons when applied in feature compression. Inspired by the appearance of aerial views, we then summarize an ideal feature compression operation, i.e., precisely highlighting the central target while maximizing the use of environmental information in a feature-smoothing manner. To achieve the above process, we propose a distance-dependent parameter initialization strategy and form a novel pooling called $D^{2}$ -GeM pooling, which can explicitly guide the network to compress fine-grained features in multiple patterns. Extensive experiments on public benchmark University-1652 substantiate that our strategy attains more appealing results without additional costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Diagnosis of Parkinson's Disease Based on Hybrid Fusion Approach of Offline Handwriting Images Differentiable Duration Refinement Using Internal Division for Non-Autoregressive Text-to-Speech SoLAD: Sampling Over Latent Adapter for Few Shot Generation Robust Multi-Prototypes Aware Integration for Zero-Shot Cross-Domain Slot Filling LFSamba: Marry SAM With Mamba for Light Field Salient Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1