铝合金板上高速激光熔覆制备的 316 不锈钢涂层的微观结构和强化机理

IF 4.4 3区 工程技术 Q1 ENGINEERING, CIVIL Archives of Civil and Mechanical Engineering Pub Date : 2024-11-03 DOI:10.1007/s43452-024-01082-6
Hengyuan Zhang, Wangjun Cheng, Yuandong Yin, Yaoning Sun, Xiao Li
{"title":"铝合金板上高速激光熔覆制备的 316 不锈钢涂层的微观结构和强化机理","authors":"Hengyuan Zhang,&nbsp;Wangjun Cheng,&nbsp;Yuandong Yin,&nbsp;Yaoning Sun,&nbsp;Xiao Li","doi":"10.1007/s43452-024-01082-6","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminum alloy plates show great potential in energy storage and transportation applications. Nevertheless, the low surface strength of aluminum alloy plates negatively impacts their performance and safety. Aluminum alloys exhibit characteristics such as a low melting point, high reflectivity, and a rapid dilution rate, posing significant challenges for laser cladding coatings. This paper presented the surface modification mechanism of aluminum alloy plates. A stainless steel coating was successfully prepared on the surface of aluminum alloy substrates by using high-speed laser cladding technology. The microstructure, microscopic morphology, and microhardness of the coatings were conducted. The surface and sides of coatings were analyzed by XRD, SEM, EBSD, and microhardness testing, respectively. It is found that larger cellular crystals and carbides predominate at the junction of the substrate and the coating. The middle part of the 0.5-mm coating from the connection and the heat-affected zone are mainly dendritic crystals. The top of the 1-mm coating from the connection is mainly fine crystals. This means that local grain refinement occurs in the stainless steel coating via high-speed laser cladding. There is a transformation of FCC to BCC in the coating. Moreover, the cross-section of the coating exhibits a relatively high microhardness, ranging from 517 to 679 HV. The microhardness at the substrate is measured at 67 HV. The maximum microhardness of the coating is ten times that of the substrate. The bottom of the coating maintains a relatively high microhardness due to the presence of a large amount of carbides. The microhardness of the coating gradually increases from the middle to the surface of the coating. This is primarily attributed to solid solution strengthening and fine grain strengthening mechanisms. Columnar crystals at the metallurgical bond between the substrate and the coating transform into fine grains at the top, leading to a gradual refinement of the microstructure. High-speed laser cladding technology facilitates the enhancement of surface properties and the improvement of surface strength in traditional aluminum alloys.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and strengthening mechanism of a 316 stainless steel coating prepared by high-speed laser cladding on an aluminum alloy plate\",\"authors\":\"Hengyuan Zhang,&nbsp;Wangjun Cheng,&nbsp;Yuandong Yin,&nbsp;Yaoning Sun,&nbsp;Xiao Li\",\"doi\":\"10.1007/s43452-024-01082-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aluminum alloy plates show great potential in energy storage and transportation applications. Nevertheless, the low surface strength of aluminum alloy plates negatively impacts their performance and safety. Aluminum alloys exhibit characteristics such as a low melting point, high reflectivity, and a rapid dilution rate, posing significant challenges for laser cladding coatings. This paper presented the surface modification mechanism of aluminum alloy plates. A stainless steel coating was successfully prepared on the surface of aluminum alloy substrates by using high-speed laser cladding technology. The microstructure, microscopic morphology, and microhardness of the coatings were conducted. The surface and sides of coatings were analyzed by XRD, SEM, EBSD, and microhardness testing, respectively. It is found that larger cellular crystals and carbides predominate at the junction of the substrate and the coating. The middle part of the 0.5-mm coating from the connection and the heat-affected zone are mainly dendritic crystals. The top of the 1-mm coating from the connection is mainly fine crystals. This means that local grain refinement occurs in the stainless steel coating via high-speed laser cladding. There is a transformation of FCC to BCC in the coating. Moreover, the cross-section of the coating exhibits a relatively high microhardness, ranging from 517 to 679 HV. The microhardness at the substrate is measured at 67 HV. The maximum microhardness of the coating is ten times that of the substrate. The bottom of the coating maintains a relatively high microhardness due to the presence of a large amount of carbides. The microhardness of the coating gradually increases from the middle to the surface of the coating. This is primarily attributed to solid solution strengthening and fine grain strengthening mechanisms. Columnar crystals at the metallurgical bond between the substrate and the coating transform into fine grains at the top, leading to a gradual refinement of the microstructure. High-speed laser cladding technology facilitates the enhancement of surface properties and the improvement of surface strength in traditional aluminum alloys.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-01082-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01082-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

铝合金板在储能和运输应用中显示出巨大的潜力。然而,铝合金板的低表面强度对其性能和安全性产生了负面影响。铝合金具有熔点低、反射率高、稀释速度快等特点,给激光熔覆涂层带来了巨大挑战。本文介绍了铝合金板的表面改性机理。利用高速激光熔覆技术在铝合金基板表面成功制备了不锈钢涂层。对涂层的微观结构、微观形貌和显微硬度进行了研究。分别通过 XRD、SEM、EBSD 和显微硬度测试分析了涂层的表面和侧面。结果发现,基体和涂层交界处主要是较大的蜂窝状晶体和碳化物。从连接处到热影响区的 0.5 毫米涂层的中间部分主要是树枝状晶体。距离连接处 1 毫米涂层的顶部主要是细小晶体。这说明,通过高速激光熔覆,不锈钢涂层发生了局部晶粒细化。涂层中出现了从 FCC 到 BCC 的转变。此外,涂层的横截面显示出相对较高的显微硬度,从 517 到 679 HV 不等。基体的显微硬度测量值为 67 HV。涂层的最大显微硬度是基体的十倍。由于存在大量碳化物,涂层底部保持了相对较高的显微硬度。涂层的显微硬度从涂层中部到表面逐渐增加。这主要归因于固溶强化和细晶粒强化机制。基体和涂层之间冶金结合处的柱状晶体在顶部转变为细小晶粒,导致微观结构逐渐细化。高速激光熔覆技术有助于提高传统铝合金的表面性能和表面强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure and strengthening mechanism of a 316 stainless steel coating prepared by high-speed laser cladding on an aluminum alloy plate

Aluminum alloy plates show great potential in energy storage and transportation applications. Nevertheless, the low surface strength of aluminum alloy plates negatively impacts their performance and safety. Aluminum alloys exhibit characteristics such as a low melting point, high reflectivity, and a rapid dilution rate, posing significant challenges for laser cladding coatings. This paper presented the surface modification mechanism of aluminum alloy plates. A stainless steel coating was successfully prepared on the surface of aluminum alloy substrates by using high-speed laser cladding technology. The microstructure, microscopic morphology, and microhardness of the coatings were conducted. The surface and sides of coatings were analyzed by XRD, SEM, EBSD, and microhardness testing, respectively. It is found that larger cellular crystals and carbides predominate at the junction of the substrate and the coating. The middle part of the 0.5-mm coating from the connection and the heat-affected zone are mainly dendritic crystals. The top of the 1-mm coating from the connection is mainly fine crystals. This means that local grain refinement occurs in the stainless steel coating via high-speed laser cladding. There is a transformation of FCC to BCC in the coating. Moreover, the cross-section of the coating exhibits a relatively high microhardness, ranging from 517 to 679 HV. The microhardness at the substrate is measured at 67 HV. The maximum microhardness of the coating is ten times that of the substrate. The bottom of the coating maintains a relatively high microhardness due to the presence of a large amount of carbides. The microhardness of the coating gradually increases from the middle to the surface of the coating. This is primarily attributed to solid solution strengthening and fine grain strengthening mechanisms. Columnar crystals at the metallurgical bond between the substrate and the coating transform into fine grains at the top, leading to a gradual refinement of the microstructure. High-speed laser cladding technology facilitates the enhancement of surface properties and the improvement of surface strength in traditional aluminum alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Civil and Mechanical Engineering
Archives of Civil and Mechanical Engineering 工程技术-材料科学:综合
CiteScore
6.80
自引率
9.10%
发文量
201
审稿时长
4 months
期刊介绍: Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science. The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics. The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation. In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.
期刊最新文献
Estimating fundamental frequency of masonry arches under elevated temperature: numerical analysis and validation using ambient vibration tests Analytical assessment of dynamic stability in 2D unsaturated soil slopes reinforced with piles Seismic capacity evaluation of corroded reinforced concrete frame structures Improving formability of AZ31B magnesium alloy induced by twinning multiplication and annihilation during electromagnetic forming Analysis and prediction of compressive strength of calcium aluminate cement paste based on machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1