用于解决全局最优问题的改进型沙猫群优化算法

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-11-04 DOI:10.1007/s10462-024-10986-x
Heming Jia, Jinrui Zhang, Honghua Rao, Laith Abualigah
{"title":"用于解决全局最优问题的改进型沙猫群优化算法","authors":"Heming Jia,&nbsp;Jinrui Zhang,&nbsp;Honghua Rao,&nbsp;Laith Abualigah","doi":"10.1007/s10462-024-10986-x","DOIUrl":null,"url":null,"abstract":"<div><p>The sand cat swarm optimization algorithm (SCSO) is a metaheuristic algorithm proposed by Amir Seyyedabbasi et al. SCSO algorithm mimics the predatory behavior of sand cats, which gives the algorithm a strong optimized performance. However, as the number of iterations of the algorithm increases, the moving efficiency of the sand cat decreases, resulting in the decline of search ability. The convergence speed of the algorithm gradually decreases, and it is easy to fall into local optimum, and it is difficult to find a better solution. In order to improve the search and movement efficiency of the sand cat, and enhance the global optimization ability and convergence performance of the algorithm, an improved sand cat Swarm Optimization (ISCSO) algorithm was proposed. In ISCSO algorithm, we propose a low-frequency noise search strategy and a spiral contraction walking strategy according to the habit of sand cat, and add random opposition-based learning and restart strategy. The frequency factor was used to control the search direction of the sand cat, and the spiral contraction hunting was carried out, which effectively improved the randomness of the population, expanded the search range of the algorithm, enhanced the moving efficiency of the sand cat, and accelerated the convergence speed of the algorithm. We use 23 standard benchmark functions and IEEE CEC2014 benchmark functions to compare ISCSO with 10 algorithms, and prove the effectiveness of the improved strategy. Finally, ISCSO was evaluated using five constrained engineering design problems. In the results of these problems, using ISCSO has 3.08%, 0.23%, 0.37%, 22.34%, 1.38% improvement compared with the original algorithm respectively, which proves the effectiveness of the improved strategy in practical application problems. The source code website for ISCSO is https://github.com/Ruiruiz30/ISCSO-s-code.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10986-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Improved sandcat swarm optimization algorithm for solving global optimum problems\",\"authors\":\"Heming Jia,&nbsp;Jinrui Zhang,&nbsp;Honghua Rao,&nbsp;Laith Abualigah\",\"doi\":\"10.1007/s10462-024-10986-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sand cat swarm optimization algorithm (SCSO) is a metaheuristic algorithm proposed by Amir Seyyedabbasi et al. SCSO algorithm mimics the predatory behavior of sand cats, which gives the algorithm a strong optimized performance. However, as the number of iterations of the algorithm increases, the moving efficiency of the sand cat decreases, resulting in the decline of search ability. The convergence speed of the algorithm gradually decreases, and it is easy to fall into local optimum, and it is difficult to find a better solution. In order to improve the search and movement efficiency of the sand cat, and enhance the global optimization ability and convergence performance of the algorithm, an improved sand cat Swarm Optimization (ISCSO) algorithm was proposed. In ISCSO algorithm, we propose a low-frequency noise search strategy and a spiral contraction walking strategy according to the habit of sand cat, and add random opposition-based learning and restart strategy. The frequency factor was used to control the search direction of the sand cat, and the spiral contraction hunting was carried out, which effectively improved the randomness of the population, expanded the search range of the algorithm, enhanced the moving efficiency of the sand cat, and accelerated the convergence speed of the algorithm. We use 23 standard benchmark functions and IEEE CEC2014 benchmark functions to compare ISCSO with 10 algorithms, and prove the effectiveness of the improved strategy. Finally, ISCSO was evaluated using five constrained engineering design problems. In the results of these problems, using ISCSO has 3.08%, 0.23%, 0.37%, 22.34%, 1.38% improvement compared with the original algorithm respectively, which proves the effectiveness of the improved strategy in practical application problems. The source code website for ISCSO is https://github.com/Ruiruiz30/ISCSO-s-code.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10986-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10986-x\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10986-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

沙猫群优化算法(SCSO)是由 Amir Seyyedabbasi 等人提出的一种元启发式算法。SCSO 算法模仿了沙猫的捕食行为,使算法具有很强的优化性能。然而,随着算法迭代次数的增加,沙猫的移动效率降低,导致搜索能力下降。算法的收敛速度逐渐降低,容易陷入局部最优,难以找到更好的解。为了提高沙猫的搜索和移动效率,增强算法的全局优化能力和收敛性能,提出了一种改进的沙猫群优化算法(ISCSO)。在 ISCSO 算法中,我们根据沙猫的习性提出了低频噪声搜索策略和螺旋收缩行走策略,并增加了基于随机对立的学习和重启策略。利用频率因子控制沙猫的搜索方向,并进行螺旋收缩狩猎,有效提高了种群的随机性,扩大了算法的搜索范围,提高了沙猫的移动效率,加快了算法的收敛速度。我们使用 23 个标准基准函数和 IEEE CEC2014 基准函数将 ISCSO 与 10 种算法进行了比较,证明了改进策略的有效性。最后,我们使用五个受限工程设计问题对 ISCSO 进行了评估。在这些问题的结果中,使用 ISCSO 与原始算法相比分别提高了 3.08%、0.23%、0.37%、22.34%、1.38%,证明了改进策略在实际应用问题中的有效性。ISCSO 的源代码网站是 https://github.com/Ruiruiz30/ISCSO-s-code。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved sandcat swarm optimization algorithm for solving global optimum problems

The sand cat swarm optimization algorithm (SCSO) is a metaheuristic algorithm proposed by Amir Seyyedabbasi et al. SCSO algorithm mimics the predatory behavior of sand cats, which gives the algorithm a strong optimized performance. However, as the number of iterations of the algorithm increases, the moving efficiency of the sand cat decreases, resulting in the decline of search ability. The convergence speed of the algorithm gradually decreases, and it is easy to fall into local optimum, and it is difficult to find a better solution. In order to improve the search and movement efficiency of the sand cat, and enhance the global optimization ability and convergence performance of the algorithm, an improved sand cat Swarm Optimization (ISCSO) algorithm was proposed. In ISCSO algorithm, we propose a low-frequency noise search strategy and a spiral contraction walking strategy according to the habit of sand cat, and add random opposition-based learning and restart strategy. The frequency factor was used to control the search direction of the sand cat, and the spiral contraction hunting was carried out, which effectively improved the randomness of the population, expanded the search range of the algorithm, enhanced the moving efficiency of the sand cat, and accelerated the convergence speed of the algorithm. We use 23 standard benchmark functions and IEEE CEC2014 benchmark functions to compare ISCSO with 10 algorithms, and prove the effectiveness of the improved strategy. Finally, ISCSO was evaluated using five constrained engineering design problems. In the results of these problems, using ISCSO has 3.08%, 0.23%, 0.37%, 22.34%, 1.38% improvement compared with the original algorithm respectively, which proves the effectiveness of the improved strategy in practical application problems. The source code website for ISCSO is https://github.com/Ruiruiz30/ISCSO-s-code.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Federated learning design and functional models: survey A systematic literature review of recent advances on context-aware recommender systems Escape: an optimization method based on crowd evacuation behaviors A multi-strategy boosted bald eagle search algorithm for global optimization and constrained engineering problems: case study on MLP classification problems Innovative solution suggestions for financing electric vehicle charging infrastructure investments with a novel artificial intelligence-based fuzzy decision-making modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1