{"title":"利用咖啡粉生物吸附剂优化水产养殖废水中硝酸盐和亚硝酸盐的回收:吸附机制及其作为土壤改良剂的潜力","authors":"Sin Ying Tan, Sumathi Sethupathi, Kah Hon Leong","doi":"10.1007/s11270-024-07597-1","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaculture wastewater (AW) is contaminated with nitrate (NO<sub>3</sub><sup>−</sup>) and nitrite (NO<sub>2</sub><sup>−</sup>), which can cause eutrophication if discharged without treatment. This study explores using coffee grounds biosorbent (CGB) to recover NO<sub>3</sub><sup>−</sup> and NO<sub>2</sub><sup>−</sup> ions from AW and reutilize the spent sorbent as a soil conditioner. The process study, adsorption isotherms and kinetics of the adsorption of NO<sub>3</sub><sup>−</sup> and NO<sub>2</sub><sup>−</sup> were deduced using several parameters and models. Spent sorbents were also compared with the commercial potting soil based on Okra plant growth metrics. The highest recovery efficiency for NO<sub>3</sub><sup>−</sup> and NO<sub>2</sub><sup>−</sup> was 98.6% and 95.0%, respectively, using 5 g/L of CGB with a 2-h contact time at pH 11. Adsorption followed the Freundlich isotherm and pseudo-first-order model, indicating multilayer adsorption on a heterogeneous surface. Optimal Okra growth was observed with 10% spent CGB (SCGB). This study highlights the potential of waste biosorbents for nutrient recovery and subsequent use as soil conditioners.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Nitrate and Nitrite Recovery from Aquaculture Wastewater Using Coffee Ground Biosorbent: Adsorption Mechanisms and Its Potential as Soil Conditioner\",\"authors\":\"Sin Ying Tan, Sumathi Sethupathi, Kah Hon Leong\",\"doi\":\"10.1007/s11270-024-07597-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aquaculture wastewater (AW) is contaminated with nitrate (NO<sub>3</sub><sup>−</sup>) and nitrite (NO<sub>2</sub><sup>−</sup>), which can cause eutrophication if discharged without treatment. This study explores using coffee grounds biosorbent (CGB) to recover NO<sub>3</sub><sup>−</sup> and NO<sub>2</sub><sup>−</sup> ions from AW and reutilize the spent sorbent as a soil conditioner. The process study, adsorption isotherms and kinetics of the adsorption of NO<sub>3</sub><sup>−</sup> and NO<sub>2</sub><sup>−</sup> were deduced using several parameters and models. Spent sorbents were also compared with the commercial potting soil based on Okra plant growth metrics. The highest recovery efficiency for NO<sub>3</sub><sup>−</sup> and NO<sub>2</sub><sup>−</sup> was 98.6% and 95.0%, respectively, using 5 g/L of CGB with a 2-h contact time at pH 11. Adsorption followed the Freundlich isotherm and pseudo-first-order model, indicating multilayer adsorption on a heterogeneous surface. Optimal Okra growth was observed with 10% spent CGB (SCGB). This study highlights the potential of waste biosorbents for nutrient recovery and subsequent use as soil conditioners.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07597-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07597-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimizing Nitrate and Nitrite Recovery from Aquaculture Wastewater Using Coffee Ground Biosorbent: Adsorption Mechanisms and Its Potential as Soil Conditioner
Aquaculture wastewater (AW) is contaminated with nitrate (NO3−) and nitrite (NO2−), which can cause eutrophication if discharged without treatment. This study explores using coffee grounds biosorbent (CGB) to recover NO3− and NO2− ions from AW and reutilize the spent sorbent as a soil conditioner. The process study, adsorption isotherms and kinetics of the adsorption of NO3− and NO2− were deduced using several parameters and models. Spent sorbents were also compared with the commercial potting soil based on Okra plant growth metrics. The highest recovery efficiency for NO3− and NO2− was 98.6% and 95.0%, respectively, using 5 g/L of CGB with a 2-h contact time at pH 11. Adsorption followed the Freundlich isotherm and pseudo-first-order model, indicating multilayer adsorption on a heterogeneous surface. Optimal Okra growth was observed with 10% spent CGB (SCGB). This study highlights the potential of waste biosorbents for nutrient recovery and subsequent use as soil conditioners.