{"title":"用于无线物联网自动调制分类的轻量级深度学习架构","authors":"Jia Han, Zhiyong Yu, Jian Yang","doi":"10.1049/cmu2.12823","DOIUrl":null,"url":null,"abstract":"<p>The wireless Internet of Things (IoT) is widely used for data transmission in power systems. Wireless communication is an important part of the IoT. The existing modulation classification algorithms have low classification accuracy when facing strong electromagnetic interference, which causes decoding error link interruption and wastes wireless channel resources. Therefore, it is necessary to study signal modulation classification methods in a low signal-to-noise ratio (SNR) environment. In this paper, a lightweight Deep Neural Networks (DNNs) modulation classification method based on the Informer architecture classifier and two-dimensional (2-D) curves input of the spectral correlation function (SCF) is proposed, which uses in-phase and quadrature (I/Q) signals to generate 2-D cross-section SCF curve first and then feeds the feature curve into the Informer network to classify the modulation method. This model can better learn the robustness characteristics in a long sequence. Through testing, the classification accuracy of the modulation signal is not much lower than that of the current good classification method when the SNR is 10 dB, and this method can still show higher accuracy when hardware resources are limited. It is a compact design of a modulation classification model and easy to deploy on low-cost embedded platforms.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 18","pages":"1220-1230"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12823","citationCount":"0","resultStr":"{\"title\":\"A lightweight deep learning architecture for automatic modulation classification of wireless internet of things\",\"authors\":\"Jia Han, Zhiyong Yu, Jian Yang\",\"doi\":\"10.1049/cmu2.12823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The wireless Internet of Things (IoT) is widely used for data transmission in power systems. Wireless communication is an important part of the IoT. The existing modulation classification algorithms have low classification accuracy when facing strong electromagnetic interference, which causes decoding error link interruption and wastes wireless channel resources. Therefore, it is necessary to study signal modulation classification methods in a low signal-to-noise ratio (SNR) environment. In this paper, a lightweight Deep Neural Networks (DNNs) modulation classification method based on the Informer architecture classifier and two-dimensional (2-D) curves input of the spectral correlation function (SCF) is proposed, which uses in-phase and quadrature (I/Q) signals to generate 2-D cross-section SCF curve first and then feeds the feature curve into the Informer network to classify the modulation method. This model can better learn the robustness characteristics in a long sequence. Through testing, the classification accuracy of the modulation signal is not much lower than that of the current good classification method when the SNR is 10 dB, and this method can still show higher accuracy when hardware resources are limited. It is a compact design of a modulation classification model and easy to deploy on low-cost embedded platforms.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"18 18\",\"pages\":\"1220-1230\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12823\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12823\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12823","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
无线物联网(IoT)广泛应用于电力系统的数据传输。无线通信是物联网的重要组成部分。现有的调制分类算法在面对强电磁干扰时分类精度较低,会造成解码错误链路中断,浪费无线信道资源。因此,有必要研究低信噪比(SNR)环境下的信号调制分类方法。本文提出了一种基于 Informer 架构分类器和频谱相关函数(SCF)二维(2-D)曲线输入的轻量级深度神经网络(DNNs)调制分类方法,该方法首先使用同相和正交(I/Q)信号生成二维截面 SCF 曲线,然后将特征曲线输入 Informer 网络,对调制方式进行分类。该模型可以更好地学习长序列中的鲁棒性特征。通过测试,当信噪比为 10 dB 时,调制信号的分类精度并不比目前较好的分类方法低多少,而且在硬件资源有限的情况下,这种方法仍能表现出较高的精度。这是一种设计紧凑的调制分类模型,易于在低成本嵌入式平台上部署。
A lightweight deep learning architecture for automatic modulation classification of wireless internet of things
The wireless Internet of Things (IoT) is widely used for data transmission in power systems. Wireless communication is an important part of the IoT. The existing modulation classification algorithms have low classification accuracy when facing strong electromagnetic interference, which causes decoding error link interruption and wastes wireless channel resources. Therefore, it is necessary to study signal modulation classification methods in a low signal-to-noise ratio (SNR) environment. In this paper, a lightweight Deep Neural Networks (DNNs) modulation classification method based on the Informer architecture classifier and two-dimensional (2-D) curves input of the spectral correlation function (SCF) is proposed, which uses in-phase and quadrature (I/Q) signals to generate 2-D cross-section SCF curve first and then feeds the feature curve into the Informer network to classify the modulation method. This model can better learn the robustness characteristics in a long sequence. Through testing, the classification accuracy of the modulation signal is not much lower than that of the current good classification method when the SNR is 10 dB, and this method can still show higher accuracy when hardware resources are limited. It is a compact design of a modulation classification model and easy to deploy on low-cost embedded platforms.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf