{"title":"使用 LZ-JC-DBSCAN、EPRC-RPOA 和 EG-GELU-GRU 的增强型双重入侵检测系统的创新模型","authors":"Jeyavim Sherin R. C., Parkavi K.","doi":"10.1049/cmu2.12831","DOIUrl":null,"url":null,"abstract":"<p>The rise of suspicious activities in network communication, driven by increased internet accessibility, necessitates the development of advanced intrusion detection systems (IDS). Existing IDS solutions often exhibit poor performance in detecting suspicious activity and fail to identify various attack types within packet capture (PCAP) files, which monitor network traffic. This paper proposes a deep learning-based dual IDS model designed to address these issues. The process begins with utilizing the CSE-CIC-IDS2019 dataset to extract features from PCAP files. Suspicious activities are detected using the Exponential Geometric-Gaussian Error Linear Units-Gated Recurrent Unit (EG-GELU-GRU) method. Normal data undergoes further feature extraction and preprocessing through Log ZScore-Jacosine Density-Based Spatial Clustering of Applications with Noise (LZ-JC-DBSCAN). Feature selection is optimized using the Entropy Pearson R Correlation-Red Panda optimization algorithm. Suspicious files are flagged, while load balancing is performed on normal data. Attack detection is achieved through word embedding with the Glorot Kaufman-bidirectional encoder representations from transformers technique and classification via the EG-GELU-GRU model. Attacked packets are blocked, and the method is reapplied for attack-type classification. Experimental results using Python demonstrate the model’s superior performance, achieving 98.18% accuracy and 98.73% precision, surpassing existing approaches and significantly enhancing intrusion detection capabilities.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 18","pages":"1300-1318"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12831","citationCount":"0","resultStr":"{\"title\":\"An innovative model for an enhanced dual intrusion detection system using LZ-JC-DBSCAN, EPRC-RPOA and EG-GELU-GRU\",\"authors\":\"Jeyavim Sherin R. C., Parkavi K.\",\"doi\":\"10.1049/cmu2.12831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rise of suspicious activities in network communication, driven by increased internet accessibility, necessitates the development of advanced intrusion detection systems (IDS). Existing IDS solutions often exhibit poor performance in detecting suspicious activity and fail to identify various attack types within packet capture (PCAP) files, which monitor network traffic. This paper proposes a deep learning-based dual IDS model designed to address these issues. The process begins with utilizing the CSE-CIC-IDS2019 dataset to extract features from PCAP files. Suspicious activities are detected using the Exponential Geometric-Gaussian Error Linear Units-Gated Recurrent Unit (EG-GELU-GRU) method. Normal data undergoes further feature extraction and preprocessing through Log ZScore-Jacosine Density-Based Spatial Clustering of Applications with Noise (LZ-JC-DBSCAN). Feature selection is optimized using the Entropy Pearson R Correlation-Red Panda optimization algorithm. Suspicious files are flagged, while load balancing is performed on normal data. Attack detection is achieved through word embedding with the Glorot Kaufman-bidirectional encoder representations from transformers technique and classification via the EG-GELU-GRU model. Attacked packets are blocked, and the method is reapplied for attack-type classification. Experimental results using Python demonstrate the model’s superior performance, achieving 98.18% accuracy and 98.73% precision, surpassing existing approaches and significantly enhancing intrusion detection capabilities.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"18 18\",\"pages\":\"1300-1318\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12831\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12831\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12831","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An innovative model for an enhanced dual intrusion detection system using LZ-JC-DBSCAN, EPRC-RPOA and EG-GELU-GRU
The rise of suspicious activities in network communication, driven by increased internet accessibility, necessitates the development of advanced intrusion detection systems (IDS). Existing IDS solutions often exhibit poor performance in detecting suspicious activity and fail to identify various attack types within packet capture (PCAP) files, which monitor network traffic. This paper proposes a deep learning-based dual IDS model designed to address these issues. The process begins with utilizing the CSE-CIC-IDS2019 dataset to extract features from PCAP files. Suspicious activities are detected using the Exponential Geometric-Gaussian Error Linear Units-Gated Recurrent Unit (EG-GELU-GRU) method. Normal data undergoes further feature extraction and preprocessing through Log ZScore-Jacosine Density-Based Spatial Clustering of Applications with Noise (LZ-JC-DBSCAN). Feature selection is optimized using the Entropy Pearson R Correlation-Red Panda optimization algorithm. Suspicious files are flagged, while load balancing is performed on normal data. Attack detection is achieved through word embedding with the Glorot Kaufman-bidirectional encoder representations from transformers technique and classification via the EG-GELU-GRU model. Attacked packets are blocked, and the method is reapplied for attack-type classification. Experimental results using Python demonstrate the model’s superior performance, achieving 98.18% accuracy and 98.73% precision, surpassing existing approaches and significantly enhancing intrusion detection capabilities.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf