{"title":"基于 ReaxFF MD 模拟和实验对 Ca2SiO4 直接碳化过程的深入研究","authors":"Ya-Jun Wang, Xiao-Pei Zhang, Dong-Mei Liu, Jun-Guo Li, Jian-Bao Zhang, Yu-Wei Zhang, Ya-Nan Zeng, Yi-Tong Wang, Bao Liu, Xi Zhang, Ya-Jing Zhang","doi":"10.1016/j.cemconres.2024.107711","DOIUrl":null,"url":null,"abstract":"<div><div>Ca<sub>2</sub>SiO<sub>4</sub> is the primary carbonation-reactive mineral in steel slag, and demonstrates significant carbon sequestration potential, yet its microscopic reaction processes remain unclear. This study investigated the carbonation behavior of Ca<sub>2</sub>SiO<sub>4</sub> using ReaxFF MD simulations. The results indicated that as CO<sub>2</sub> concentration increased, the capture rate of Ca<sub>2</sub>SiO<sub>4</sub> decreased, and the molecular structure of the resulting CaCO<sub>3</sub> varied in oxygen origin. At room temperature, the carbonation rate of Ca₂SiO₄ gradually decreased over time until it reached equilibrium. Increasing the temperature could reactivate the carbonation, but the rate would still decline until it reached equilibrium again. Higher temperatures could accelerate the formation of the intermediate C<sub>2</sub>O<sub>5</sub><sup>2−</sup> and internal CO<sub>3</sub><sup>2−</sup> diffusion, thereby boosting the carbonation and increasing CO<sub>2</sub> adsorption. This study investigated the carbonation of Ca<sub>2</sub>SiO<sub>4</sub> at the atomic level, aiming to link microscopic molecular processes with macroscopic experimental phenomena, thereby providing a theoretical foundation for enhancing the carbonation efficiency of steel slag.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"187 ","pages":"Article 107711"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into the direct carbonation process of Ca2SiO4 based on ReaxFF MD simulation and experiments\",\"authors\":\"Ya-Jun Wang, Xiao-Pei Zhang, Dong-Mei Liu, Jun-Guo Li, Jian-Bao Zhang, Yu-Wei Zhang, Ya-Nan Zeng, Yi-Tong Wang, Bao Liu, Xi Zhang, Ya-Jing Zhang\",\"doi\":\"10.1016/j.cemconres.2024.107711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ca<sub>2</sub>SiO<sub>4</sub> is the primary carbonation-reactive mineral in steel slag, and demonstrates significant carbon sequestration potential, yet its microscopic reaction processes remain unclear. This study investigated the carbonation behavior of Ca<sub>2</sub>SiO<sub>4</sub> using ReaxFF MD simulations. The results indicated that as CO<sub>2</sub> concentration increased, the capture rate of Ca<sub>2</sub>SiO<sub>4</sub> decreased, and the molecular structure of the resulting CaCO<sub>3</sub> varied in oxygen origin. At room temperature, the carbonation rate of Ca₂SiO₄ gradually decreased over time until it reached equilibrium. Increasing the temperature could reactivate the carbonation, but the rate would still decline until it reached equilibrium again. Higher temperatures could accelerate the formation of the intermediate C<sub>2</sub>O<sub>5</sub><sup>2−</sup> and internal CO<sub>3</sub><sup>2−</sup> diffusion, thereby boosting the carbonation and increasing CO<sub>2</sub> adsorption. This study investigated the carbonation of Ca<sub>2</sub>SiO<sub>4</sub> at the atomic level, aiming to link microscopic molecular processes with macroscopic experimental phenomena, thereby providing a theoretical foundation for enhancing the carbonation efficiency of steel slag.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"187 \",\"pages\":\"Article 107711\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002928\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002928","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Insight into the direct carbonation process of Ca2SiO4 based on ReaxFF MD simulation and experiments
Ca2SiO4 is the primary carbonation-reactive mineral in steel slag, and demonstrates significant carbon sequestration potential, yet its microscopic reaction processes remain unclear. This study investigated the carbonation behavior of Ca2SiO4 using ReaxFF MD simulations. The results indicated that as CO2 concentration increased, the capture rate of Ca2SiO4 decreased, and the molecular structure of the resulting CaCO3 varied in oxygen origin. At room temperature, the carbonation rate of Ca₂SiO₄ gradually decreased over time until it reached equilibrium. Increasing the temperature could reactivate the carbonation, but the rate would still decline until it reached equilibrium again. Higher temperatures could accelerate the formation of the intermediate C2O52− and internal CO32− diffusion, thereby boosting the carbonation and increasing CO2 adsorption. This study investigated the carbonation of Ca2SiO4 at the atomic level, aiming to link microscopic molecular processes with macroscopic experimental phenomena, thereby providing a theoretical foundation for enhancing the carbonation efficiency of steel slag.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.