Zengliang Yue, Yuvaraj Dhandapani, Susan A. Bernal
{"title":"自然碳化和加速碳化引起的碱硫酸盐活性矿渣水泥浆的结构变化","authors":"Zengliang Yue, Yuvaraj Dhandapani, Susan A. Bernal","doi":"10.1016/j.cemconres.2024.107713","DOIUrl":null,"url":null,"abstract":"<div><div>The impact of carbonation, induced at different CO<sub>2</sub> concentrations (0.04 or 1 %), in the phase assemblages and compressive strength of Na<sub>2</sub>SO<sub>4</sub>-activated slag materials was determined. Carbonation led to Ca-bearing phases' decalcification (mainly C-(A)-S-H type gel and ettringite) forming different CaCO<sub>3</sub> polymorphs, independent of the slag composition or carbonation conditions adopted. In specimens exposed to 0.04 % CO<sub>2</sub>, a negligible carbonation front was observed, along with a continued phase assemblage evolution and compressive strength gain after 500 days of exposure. Conversely, exposure to 1 % CO<sub>2</sub> led to complete carbonation after 28 days, and a significant compressive strength reduction. Accelerated carbonation does not lead to the development of comparable microstructures to those observed in naturally carbonated pastes. The accelerated carbonation rates were ~ 33 times higher than those determined under natural carbonation exposure. Therefore, accelerated tests are considered unsuitable for predicting the long-term carbonation performance of Na<sub>2</sub>SO<sub>4</sub>-activated slag cements.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"187 ","pages":"Article 107713"},"PeriodicalIF":10.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural alterations in alkali-sulfate-activated slag cement pastes induced by natural and accelerated carbonation\",\"authors\":\"Zengliang Yue, Yuvaraj Dhandapani, Susan A. Bernal\",\"doi\":\"10.1016/j.cemconres.2024.107713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The impact of carbonation, induced at different CO<sub>2</sub> concentrations (0.04 or 1 %), in the phase assemblages and compressive strength of Na<sub>2</sub>SO<sub>4</sub>-activated slag materials was determined. Carbonation led to Ca-bearing phases' decalcification (mainly C-(A)-S-H type gel and ettringite) forming different CaCO<sub>3</sub> polymorphs, independent of the slag composition or carbonation conditions adopted. In specimens exposed to 0.04 % CO<sub>2</sub>, a negligible carbonation front was observed, along with a continued phase assemblage evolution and compressive strength gain after 500 days of exposure. Conversely, exposure to 1 % CO<sub>2</sub> led to complete carbonation after 28 days, and a significant compressive strength reduction. Accelerated carbonation does not lead to the development of comparable microstructures to those observed in naturally carbonated pastes. The accelerated carbonation rates were ~ 33 times higher than those determined under natural carbonation exposure. Therefore, accelerated tests are considered unsuitable for predicting the long-term carbonation performance of Na<sub>2</sub>SO<sub>4</sub>-activated slag cements.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"187 \",\"pages\":\"Article 107713\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884624002941\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884624002941","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Structural alterations in alkali-sulfate-activated slag cement pastes induced by natural and accelerated carbonation
The impact of carbonation, induced at different CO2 concentrations (0.04 or 1 %), in the phase assemblages and compressive strength of Na2SO4-activated slag materials was determined. Carbonation led to Ca-bearing phases' decalcification (mainly C-(A)-S-H type gel and ettringite) forming different CaCO3 polymorphs, independent of the slag composition or carbonation conditions adopted. In specimens exposed to 0.04 % CO2, a negligible carbonation front was observed, along with a continued phase assemblage evolution and compressive strength gain after 500 days of exposure. Conversely, exposure to 1 % CO2 led to complete carbonation after 28 days, and a significant compressive strength reduction. Accelerated carbonation does not lead to the development of comparable microstructures to those observed in naturally carbonated pastes. The accelerated carbonation rates were ~ 33 times higher than those determined under natural carbonation exposure. Therefore, accelerated tests are considered unsuitable for predicting the long-term carbonation performance of Na2SO4-activated slag cements.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.