人工智能在心血管临床试验中的应用

IF 21.7 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Journal of the American College of Cardiology Pub Date : 2024-11-04 DOI:10.1016/j.jacc.2024.08.069
Jonathan W. Cunningham MD, MPH , William T. Abraham MD , Ankeet S. Bhatt MD, MBA, ScM , Jessilyn Dunn PhD , G. Michael Felker MD, MHS , Sneha S. Jain MD, MBA , Christopher J. Lindsell PhD , Matthew Mace BS , Trejeeve Martyn MD, MS , Rashmee U. Shah MD, MS , Geoffrey H. Tison MD, MPH , Tala Fakhouri PhD, MPH , Mitchell A. Psotka MD, PhD , Harlan Krumholz MD , Mona Fiuzat PharmD , Christopher M. O’Connor MD , Scott D. Solomon MD , Heart Failure Collaboratory
{"title":"人工智能在心血管临床试验中的应用","authors":"Jonathan W. Cunningham MD, MPH ,&nbsp;William T. Abraham MD ,&nbsp;Ankeet S. Bhatt MD, MBA, ScM ,&nbsp;Jessilyn Dunn PhD ,&nbsp;G. Michael Felker MD, MHS ,&nbsp;Sneha S. Jain MD, MBA ,&nbsp;Christopher J. Lindsell PhD ,&nbsp;Matthew Mace BS ,&nbsp;Trejeeve Martyn MD, MS ,&nbsp;Rashmee U. Shah MD, MS ,&nbsp;Geoffrey H. Tison MD, MPH ,&nbsp;Tala Fakhouri PhD, MPH ,&nbsp;Mitchell A. Psotka MD, PhD ,&nbsp;Harlan Krumholz MD ,&nbsp;Mona Fiuzat PharmD ,&nbsp;Christopher M. O’Connor MD ,&nbsp;Scott D. Solomon MD ,&nbsp;Heart Failure Collaboratory","doi":"10.1016/j.jacc.2024.08.069","DOIUrl":null,"url":null,"abstract":"<div><div>Randomized clinical trials are the gold standard for establishing the efficacy and safety of cardiovascular therapies. However, current pivotal trials are expensive, lengthy, and insufficiently diverse. Emerging artificial intelligence (AI) technologies can potentially automate and streamline clinical trial operations. This review describes opportunities to integrate AI throughout a trial’s life cycle, including designing the trial, identifying eligible patients, obtaining informed consent, ascertaining physiological and clinical event outcomes, interpreting imaging, and analyzing or disseminating the results. Nevertheless, AI poses risks, including generating inaccurate results, amplifying biases against underrepresented groups, and violating patient privacy. Medical journals and regulators are developing new frameworks to evaluate AI research tools and the data they generate. Given the high-stakes role of randomized trials in medical decision making, AI must be integrated carefully and transparently to protect the validity of trial results.</div></div>","PeriodicalId":17187,"journal":{"name":"Journal of the American College of Cardiology","volume":"84 20","pages":"Pages 2051-2062"},"PeriodicalIF":21.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Cardiovascular Clinical Trials\",\"authors\":\"Jonathan W. Cunningham MD, MPH ,&nbsp;William T. Abraham MD ,&nbsp;Ankeet S. Bhatt MD, MBA, ScM ,&nbsp;Jessilyn Dunn PhD ,&nbsp;G. Michael Felker MD, MHS ,&nbsp;Sneha S. Jain MD, MBA ,&nbsp;Christopher J. Lindsell PhD ,&nbsp;Matthew Mace BS ,&nbsp;Trejeeve Martyn MD, MS ,&nbsp;Rashmee U. Shah MD, MS ,&nbsp;Geoffrey H. Tison MD, MPH ,&nbsp;Tala Fakhouri PhD, MPH ,&nbsp;Mitchell A. Psotka MD, PhD ,&nbsp;Harlan Krumholz MD ,&nbsp;Mona Fiuzat PharmD ,&nbsp;Christopher M. O’Connor MD ,&nbsp;Scott D. Solomon MD ,&nbsp;Heart Failure Collaboratory\",\"doi\":\"10.1016/j.jacc.2024.08.069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Randomized clinical trials are the gold standard for establishing the efficacy and safety of cardiovascular therapies. However, current pivotal trials are expensive, lengthy, and insufficiently diverse. Emerging artificial intelligence (AI) technologies can potentially automate and streamline clinical trial operations. This review describes opportunities to integrate AI throughout a trial’s life cycle, including designing the trial, identifying eligible patients, obtaining informed consent, ascertaining physiological and clinical event outcomes, interpreting imaging, and analyzing or disseminating the results. Nevertheless, AI poses risks, including generating inaccurate results, amplifying biases against underrepresented groups, and violating patient privacy. Medical journals and regulators are developing new frameworks to evaluate AI research tools and the data they generate. Given the high-stakes role of randomized trials in medical decision making, AI must be integrated carefully and transparently to protect the validity of trial results.</div></div>\",\"PeriodicalId\":17187,\"journal\":{\"name\":\"Journal of the American College of Cardiology\",\"volume\":\"84 20\",\"pages\":\"Pages 2051-2062\"},\"PeriodicalIF\":21.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American College of Cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735109724084572\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American College of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735109724084572","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随机临床试验是确定心血管疗法疗效和安全性的黄金标准。然而,目前的关键性试验成本高昂、时间漫长且不够多样化。新兴的人工智能(AI)技术有可能实现临床试验操作的自动化和简化。本综述介绍了在试验的整个生命周期中整合人工智能的机会,包括设计试验、确定符合条件的患者、获得知情同意、确定生理和临床事件结果、解释成像以及分析或传播结果。然而,人工智能也存在风险,包括产生不准确的结果、扩大对代表性不足群体的偏见以及侵犯患者隐私。医学期刊和监管机构正在开发新的框架,以评估人工智能研究工具及其生成的数据。鉴于随机试验在医疗决策中的重要作用,必须谨慎、透明地整合人工智能,以保护试验结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Intelligence in Cardiovascular Clinical Trials
Randomized clinical trials are the gold standard for establishing the efficacy and safety of cardiovascular therapies. However, current pivotal trials are expensive, lengthy, and insufficiently diverse. Emerging artificial intelligence (AI) technologies can potentially automate and streamline clinical trial operations. This review describes opportunities to integrate AI throughout a trial’s life cycle, including designing the trial, identifying eligible patients, obtaining informed consent, ascertaining physiological and clinical event outcomes, interpreting imaging, and analyzing or disseminating the results. Nevertheless, AI poses risks, including generating inaccurate results, amplifying biases against underrepresented groups, and violating patient privacy. Medical journals and regulators are developing new frameworks to evaluate AI research tools and the data they generate. Given the high-stakes role of randomized trials in medical decision making, AI must be integrated carefully and transparently to protect the validity of trial results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
42.70
自引率
3.30%
发文量
5097
审稿时长
2-4 weeks
期刊介绍: The Journal of the American College of Cardiology (JACC) publishes peer-reviewed articles highlighting all aspects of cardiovascular disease, including original clinical studies, experimental investigations with clear clinical relevance, state-of-the-art papers and viewpoints. Content Profile: -Original Investigations -JACC State-of-the-Art Reviews -JACC Review Topics of the Week -Guidelines & Clinical Documents -JACC Guideline Comparisons -JACC Scientific Expert Panels -Cardiovascular Medicine & Society -Editorial Comments (accompanying every Original Investigation) -Research Letters -Fellows-in-Training/Early Career Professional Pages -Editor’s Pages from the Editor-in-Chief or other invited thought leaders
期刊最新文献
Adding AI to the Toolkit for Patients With Implantable Cardioverter-Defibrillators Congenitally Corrected Transposition of the Great Arteries: The Impact of Anatomic vs Physiologic Repair Advanced Imaging Assessment of the Impact of Tricuspid Regurgitation on Cardiac Remodeling: The TRILUMINATE Pivotal Imaging Substudy Machine Learning-Based Prediction of Death and Hospitalization in Patients With Implantable Cardioverter Defibrillators Getting Imaging Right: Multimodal Assessment of Right-Sided Heart Function in Patients Undergoing Tricuspid Repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1