{"title":"在可见光照射下通过自旋禁激生成二氟碳。","authors":"Shan Liu, Guang-Ning Pan, Yijing Ling, Feng Gao, Yin Yang, Ganglong Cui, Qilong Shen, Tianfei Liu","doi":"10.1021/jacs.4c10939","DOIUrl":null,"url":null,"abstract":"<p><p>The generation of difluorocarbene from difluoromethane bis(sulfonium ylide) <b>1</b> through spin-forbidden excitation under irradiation with 450 nm blue light was reported. The formation of difluorocarbene was confirmed by its reaction with styrene derivatives for the generation of difluorocyclopropanation and insertion into RX-H bonds (X = O, S) for the generation of RXCF<sub>2</sub>H. The spin-forbidden excitation mechanism for the formation of difluorocarbene from difluoromethane bis(sulfonium ylide) was supported by spectroscopic and kinetic studies as well as computational chemistry. The homolytic cleavage of two S-C bonds in compound <b>1</b> under irradiation was confirmed by time-resolved EPR spectroscopic studies of the precursor's free-radical-capturing reaction, as well as the isolation of the dimer of dimethyl (phenylthiol)malonyl radical. Further studies showed that the homolytic cleavage process occurred asynchronously in the solvent cage based on the isotope-labeled scrambling experiments and DFT calculations.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31094-31105"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Difluorocarbene Generation via a Spin-Forbidden Excitation under Visible Light Irradiation.\",\"authors\":\"Shan Liu, Guang-Ning Pan, Yijing Ling, Feng Gao, Yin Yang, Ganglong Cui, Qilong Shen, Tianfei Liu\",\"doi\":\"10.1021/jacs.4c10939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The generation of difluorocarbene from difluoromethane bis(sulfonium ylide) <b>1</b> through spin-forbidden excitation under irradiation with 450 nm blue light was reported. The formation of difluorocarbene was confirmed by its reaction with styrene derivatives for the generation of difluorocyclopropanation and insertion into RX-H bonds (X = O, S) for the generation of RXCF<sub>2</sub>H. The spin-forbidden excitation mechanism for the formation of difluorocarbene from difluoromethane bis(sulfonium ylide) was supported by spectroscopic and kinetic studies as well as computational chemistry. The homolytic cleavage of two S-C bonds in compound <b>1</b> under irradiation was confirmed by time-resolved EPR spectroscopic studies of the precursor's free-radical-capturing reaction, as well as the isolation of the dimer of dimethyl (phenylthiol)malonyl radical. Further studies showed that the homolytic cleavage process occurred asynchronously in the solvent cage based on the isotope-labeled scrambling experiments and DFT calculations.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"31094-31105\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c10939\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10939","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Difluorocarbene Generation via a Spin-Forbidden Excitation under Visible Light Irradiation.
The generation of difluorocarbene from difluoromethane bis(sulfonium ylide) 1 through spin-forbidden excitation under irradiation with 450 nm blue light was reported. The formation of difluorocarbene was confirmed by its reaction with styrene derivatives for the generation of difluorocyclopropanation and insertion into RX-H bonds (X = O, S) for the generation of RXCF2H. The spin-forbidden excitation mechanism for the formation of difluorocarbene from difluoromethane bis(sulfonium ylide) was supported by spectroscopic and kinetic studies as well as computational chemistry. The homolytic cleavage of two S-C bonds in compound 1 under irradiation was confirmed by time-resolved EPR spectroscopic studies of the precursor's free-radical-capturing reaction, as well as the isolation of the dimer of dimethyl (phenylthiol)malonyl radical. Further studies showed that the homolytic cleavage process occurred asynchronously in the solvent cage based on the isotope-labeled scrambling experiments and DFT calculations.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.