Zin Tarakji, Adel Kanaan, Samer Saadi, Mohammed Firwana, Adel Kabbara Allababidi, Mohamed F Abusalih, Rami Basmaci, Tamim I Rajjo, Zhen Wang, M Hassan Murad, Bashar Hasan
{"title":"使用 Murad 工具评估病例报告和系列病例的方法学质量时,人类与 GPT-4 之间的一致性。","authors":"Zin Tarakji, Adel Kanaan, Samer Saadi, Mohammed Firwana, Adel Kabbara Allababidi, Mohamed F Abusalih, Rami Basmaci, Tamim I Rajjo, Zhen Wang, M Hassan Murad, Bashar Hasan","doi":"10.1186/s12874-024-02372-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Assessing the methodological quality of case reports and case series is challenging due to human judgment variability and time constraints. We evaluated the agreement in judgments between human reviewers and GPT-4 when applying a standard methodological quality assessment tool designed for case reports and series.</p><p><strong>Methods: </strong>We searched Scopus for systematic reviews published in 2023-2024 that cited the appraisal tool by Murad et al. A GPT-4 based agent was developed to assess the methodological quality using the 8 signaling questions of the tool. Observed agreement and agreement coefficient were estimated comparing published judgments of human reviewers to GPT-4 assessment.</p><p><strong>Results: </strong>We included 797 case reports and series. The observed agreement ranged between 41.91% and 80.93% across the eight questions (agreement coefficient ranged from 25.39 to 79.72%). The lowest agreement was noted in the first signaling question about selection of cases. The agreement was similar in articles published in journals with impact factor < 5 vs. ≥ 5, and when excluding systematic reviews that did not use 3 causality questions. Repeating the analysis using the same prompts demonstrated high agreement between the two GPT-4 attempts except for the first question about selection of cases.</p><p><strong>Conclusions: </strong>The study demonstrates a moderate agreement between GPT-4 and human reviewers in assessing the methodological quality of case series and reports using the Murad tool. The current performance of GPT-4 seems promising but unlikely to be sufficient for the rigor of a systematic review and pairing the model with a human reviewer is required.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533388/pdf/","citationCount":"0","resultStr":"{\"title\":\"Concordance between humans and GPT-4 in appraising the methodological quality of case reports and case series using the Murad tool.\",\"authors\":\"Zin Tarakji, Adel Kanaan, Samer Saadi, Mohammed Firwana, Adel Kabbara Allababidi, Mohamed F Abusalih, Rami Basmaci, Tamim I Rajjo, Zhen Wang, M Hassan Murad, Bashar Hasan\",\"doi\":\"10.1186/s12874-024-02372-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Assessing the methodological quality of case reports and case series is challenging due to human judgment variability and time constraints. We evaluated the agreement in judgments between human reviewers and GPT-4 when applying a standard methodological quality assessment tool designed for case reports and series.</p><p><strong>Methods: </strong>We searched Scopus for systematic reviews published in 2023-2024 that cited the appraisal tool by Murad et al. A GPT-4 based agent was developed to assess the methodological quality using the 8 signaling questions of the tool. Observed agreement and agreement coefficient were estimated comparing published judgments of human reviewers to GPT-4 assessment.</p><p><strong>Results: </strong>We included 797 case reports and series. The observed agreement ranged between 41.91% and 80.93% across the eight questions (agreement coefficient ranged from 25.39 to 79.72%). The lowest agreement was noted in the first signaling question about selection of cases. The agreement was similar in articles published in journals with impact factor < 5 vs. ≥ 5, and when excluding systematic reviews that did not use 3 causality questions. Repeating the analysis using the same prompts demonstrated high agreement between the two GPT-4 attempts except for the first question about selection of cases.</p><p><strong>Conclusions: </strong>The study demonstrates a moderate agreement between GPT-4 and human reviewers in assessing the methodological quality of case series and reports using the Murad tool. The current performance of GPT-4 seems promising but unlikely to be sufficient for the rigor of a systematic review and pairing the model with a human reviewer is required.</p>\",\"PeriodicalId\":9114,\"journal\":{\"name\":\"BMC Medical Research Methodology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533388/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Research Methodology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12874-024-02372-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02372-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Concordance between humans and GPT-4 in appraising the methodological quality of case reports and case series using the Murad tool.
Background: Assessing the methodological quality of case reports and case series is challenging due to human judgment variability and time constraints. We evaluated the agreement in judgments between human reviewers and GPT-4 when applying a standard methodological quality assessment tool designed for case reports and series.
Methods: We searched Scopus for systematic reviews published in 2023-2024 that cited the appraisal tool by Murad et al. A GPT-4 based agent was developed to assess the methodological quality using the 8 signaling questions of the tool. Observed agreement and agreement coefficient were estimated comparing published judgments of human reviewers to GPT-4 assessment.
Results: We included 797 case reports and series. The observed agreement ranged between 41.91% and 80.93% across the eight questions (agreement coefficient ranged from 25.39 to 79.72%). The lowest agreement was noted in the first signaling question about selection of cases. The agreement was similar in articles published in journals with impact factor < 5 vs. ≥ 5, and when excluding systematic reviews that did not use 3 causality questions. Repeating the analysis using the same prompts demonstrated high agreement between the two GPT-4 attempts except for the first question about selection of cases.
Conclusions: The study demonstrates a moderate agreement between GPT-4 and human reviewers in assessing the methodological quality of case series and reports using the Murad tool. The current performance of GPT-4 seems promising but unlikely to be sufficient for the rigor of a systematic review and pairing the model with a human reviewer is required.
期刊介绍:
BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.