Daniel Uribe-Ramírez, Lucero Romero-Aguilar, Héctor Vázquez-Meza, Eliseo Cristiani-Urbina, Juan Pablo Pardo
{"title":"地衣芽孢杆菌作为一种嗜碱和降解氰化物微生物的呼吸链改造。","authors":"Daniel Uribe-Ramírez, Lucero Romero-Aguilar, Héctor Vázquez-Meza, Eliseo Cristiani-Urbina, Juan Pablo Pardo","doi":"10.1007/s10863-024-10041-y","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus licheniformis can use cyanide as a nitrogen source for its growth. However, it can also carry out aerobic respiration in the presence of this compound, a classic inhibitor of mammalian cytochrome c oxidase, indicating that B. licheniformis has a branched respiratory chain with various terminal oxidases. Here, we studied the modifications in the respiratory chain of B. licheniformis when cells were cultured in Nutrient Broth, an alkaline medium with ammonium, or an alkaline medium with cyanide. Then, we measured oxygen consumption in intact cells and membranes, enzyme activities, carried out 1D and 2D-BN-PAGE, followed by mass spectrometry analysis of BN-PAGE bands associated with NADH, NADPH, and succinate dehydrogenase activities. We found that cell growth was favored in a nutrient medium than in an alkaline medium with cyanide. In parallel, respiratory activity progressively decreased in cells cultured in the rich medium, alkaline medium with ammonium, and the lowest activity was in the cells growing in the alkaline medium with cyanide. B. licheniformis membranes contain NADH, NADPH, and succinate dehydrogenases, and the proteomic analysis detected the nitrate reductase and the bc, caa3, aa3, and bd complexes. The succinate dehydrogenase migrated with a molecular mass of 375 kDa, indicating its association with the nitrate reductase (115 kDa + 241 kDa, respectively). The NADH dehydrogenase of B. licheniformis forms aggregates of different molecular mass.</p>","PeriodicalId":15080,"journal":{"name":"Journal of Bioenergetics and Biomembranes","volume":" ","pages":"591-605"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624218/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modifications of the respiratory chain of Bacillus licheniformis as an alkalophilic and cyanide-degrading microorganism.\",\"authors\":\"Daniel Uribe-Ramírez, Lucero Romero-Aguilar, Héctor Vázquez-Meza, Eliseo Cristiani-Urbina, Juan Pablo Pardo\",\"doi\":\"10.1007/s10863-024-10041-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacillus licheniformis can use cyanide as a nitrogen source for its growth. However, it can also carry out aerobic respiration in the presence of this compound, a classic inhibitor of mammalian cytochrome c oxidase, indicating that B. licheniformis has a branched respiratory chain with various terminal oxidases. Here, we studied the modifications in the respiratory chain of B. licheniformis when cells were cultured in Nutrient Broth, an alkaline medium with ammonium, or an alkaline medium with cyanide. Then, we measured oxygen consumption in intact cells and membranes, enzyme activities, carried out 1D and 2D-BN-PAGE, followed by mass spectrometry analysis of BN-PAGE bands associated with NADH, NADPH, and succinate dehydrogenase activities. We found that cell growth was favored in a nutrient medium than in an alkaline medium with cyanide. In parallel, respiratory activity progressively decreased in cells cultured in the rich medium, alkaline medium with ammonium, and the lowest activity was in the cells growing in the alkaline medium with cyanide. B. licheniformis membranes contain NADH, NADPH, and succinate dehydrogenases, and the proteomic analysis detected the nitrate reductase and the bc, caa3, aa3, and bd complexes. The succinate dehydrogenase migrated with a molecular mass of 375 kDa, indicating its association with the nitrate reductase (115 kDa + 241 kDa, respectively). The NADH dehydrogenase of B. licheniformis forms aggregates of different molecular mass.</p>\",\"PeriodicalId\":15080,\"journal\":{\"name\":\"Journal of Bioenergetics and Biomembranes\",\"volume\":\" \",\"pages\":\"591-605\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624218/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioenergetics and Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10863-024-10041-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioenergetics and Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-024-10041-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Modifications of the respiratory chain of Bacillus licheniformis as an alkalophilic and cyanide-degrading microorganism.
Bacillus licheniformis can use cyanide as a nitrogen source for its growth. However, it can also carry out aerobic respiration in the presence of this compound, a classic inhibitor of mammalian cytochrome c oxidase, indicating that B. licheniformis has a branched respiratory chain with various terminal oxidases. Here, we studied the modifications in the respiratory chain of B. licheniformis when cells were cultured in Nutrient Broth, an alkaline medium with ammonium, or an alkaline medium with cyanide. Then, we measured oxygen consumption in intact cells and membranes, enzyme activities, carried out 1D and 2D-BN-PAGE, followed by mass spectrometry analysis of BN-PAGE bands associated with NADH, NADPH, and succinate dehydrogenase activities. We found that cell growth was favored in a nutrient medium than in an alkaline medium with cyanide. In parallel, respiratory activity progressively decreased in cells cultured in the rich medium, alkaline medium with ammonium, and the lowest activity was in the cells growing in the alkaline medium with cyanide. B. licheniformis membranes contain NADH, NADPH, and succinate dehydrogenases, and the proteomic analysis detected the nitrate reductase and the bc, caa3, aa3, and bd complexes. The succinate dehydrogenase migrated with a molecular mass of 375 kDa, indicating its association with the nitrate reductase (115 kDa + 241 kDa, respectively). The NADH dehydrogenase of B. licheniformis forms aggregates of different molecular mass.
期刊介绍:
The Journal of Bioenergetics and Biomembranes is an international journal devoted to the publication of original research that contributes to fundamental knowledge in the areas of bioenergetics, biomembranes, and transport, including oxidative phosphorylation, photosynthesis, muscle contraction, as well as cellular and systemic metabolism. The timely research in this international journal benefits biophysicists, membrane biologists, cell biologists, biochemists, molecular biologists, physiologists, endocrinologists, and bio-organic chemists.