MK-8189:用于治疗精神分裂症的新型磷酸二酯酶 10A 抑制剂 MK-8189。

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-11-04 DOI:10.1124/jpet.124.002347
Sean Smith, Dawn Toolan, Monika Kandebo, Joshua Vardigan, Izzat Raheem, Mark E Layton, Jeffrey C Kern, Christopher Cox, Liza Gantert, Kerry Riffel, Eric Hostetler, Jason M Uslaner
{"title":"MK-8189:用于治疗精神分裂症的新型磷酸二酯酶 10A 抑制剂 MK-8189。","authors":"Sean Smith, Dawn Toolan, Monika Kandebo, Joshua Vardigan, Izzat Raheem, Mark E Layton, Jeffrey C Kern, Christopher Cox, Liza Gantert, Kerry Riffel, Eric Hostetler, Jason M Uslaner","doi":"10.1124/jpet.124.002347","DOIUrl":null,"url":null,"abstract":"<p><p>MK-8189 is a novel phosphodiesterase 10A (PDE10A) inhibitor being evaluated in clinical studies for the treatment of schizophrenia. PDE10A is a cyclic nucleotide phosphodiesterase enzyme highly expressed in medium spiny neurons of the striatum. MK-8189 exhibits sub-nanomolar potency on the PDE10A enzyme and has excellent pharmaceutical properties. Oral administration of MK-8189 significantly increased cGMP and pGluR1 in rat striatal tissues. Activation of the dopamine D1 direct and D2 indirect pathways was demonstrated by detecting significant elevation of mRNA encoding substance P (Sub P) and enkephalin (ENK) after MK-8189 administration. The PDE10A tracer [<sup>3</sup>H]MK-8193 was used determine the PDE10A enzyme occupancy (EO) required for efficacy in behavioral models. In the rat conditioned avoidance responding assay, MK-8189 significantly decreased avoidance behavior at PDE10A EO greater than ~48%. MK-8189 significantly reversed an MK-801-induced deficit in pre-pulse inhibition at PDE10A EO of ~47% and higher. Target engagement of MK-8189 in rhesus monkeys was examined with [<sup>11</sup>C]MK-8193 in PET studies and plasma concentrations of 127nM MK-8189 yielded ~50% EO in the striatum. The impact of MK-8189 on cognitive symptoms was evaluated using the objective retrieval task in rhesus monkeys. MK-8189 significantly attenuated a ketamine-induced deficit in object retrieval performance at exposure that yielded ~29% PDE10A EO. These findings demonstrate the robust impact of MK-8189 on striatal signaling and efficacy in preclinical models of symptoms associated with schizophrenia. Data from these studies were used to establish the relationship between preclinical efficacy, plasma exposures, and PDE10A EO to guide dose selection of MK-8189 in clinical studies. <b>Significance Statement</b> We describe the primary pharmacology of MK-8189 a PDE10A inhibitor under evaluation for the treatment of schizophrenia. We report efficacy in preclinical models that have been used to characterize other PDE10A inhibitors and atypical antipsychotics. The PDE10A occupancy achieved by MK-8189 in behavioral studies was used to support dose selection in clinical trials. This work provides evidence to support exploration of higher levels of PDE10A occupancy in clinical trials to determine if this translates to improved efficacy in patients.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preclinical Evaluation of MK-8189: A Novel Phosphodiesterase 10A Inhibitor for the Treatment of Schizophrenia.\",\"authors\":\"Sean Smith, Dawn Toolan, Monika Kandebo, Joshua Vardigan, Izzat Raheem, Mark E Layton, Jeffrey C Kern, Christopher Cox, Liza Gantert, Kerry Riffel, Eric Hostetler, Jason M Uslaner\",\"doi\":\"10.1124/jpet.124.002347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MK-8189 is a novel phosphodiesterase 10A (PDE10A) inhibitor being evaluated in clinical studies for the treatment of schizophrenia. PDE10A is a cyclic nucleotide phosphodiesterase enzyme highly expressed in medium spiny neurons of the striatum. MK-8189 exhibits sub-nanomolar potency on the PDE10A enzyme and has excellent pharmaceutical properties. Oral administration of MK-8189 significantly increased cGMP and pGluR1 in rat striatal tissues. Activation of the dopamine D1 direct and D2 indirect pathways was demonstrated by detecting significant elevation of mRNA encoding substance P (Sub P) and enkephalin (ENK) after MK-8189 administration. The PDE10A tracer [<sup>3</sup>H]MK-8193 was used determine the PDE10A enzyme occupancy (EO) required for efficacy in behavioral models. In the rat conditioned avoidance responding assay, MK-8189 significantly decreased avoidance behavior at PDE10A EO greater than ~48%. MK-8189 significantly reversed an MK-801-induced deficit in pre-pulse inhibition at PDE10A EO of ~47% and higher. Target engagement of MK-8189 in rhesus monkeys was examined with [<sup>11</sup>C]MK-8193 in PET studies and plasma concentrations of 127nM MK-8189 yielded ~50% EO in the striatum. The impact of MK-8189 on cognitive symptoms was evaluated using the objective retrieval task in rhesus monkeys. MK-8189 significantly attenuated a ketamine-induced deficit in object retrieval performance at exposure that yielded ~29% PDE10A EO. These findings demonstrate the robust impact of MK-8189 on striatal signaling and efficacy in preclinical models of symptoms associated with schizophrenia. Data from these studies were used to establish the relationship between preclinical efficacy, plasma exposures, and PDE10A EO to guide dose selection of MK-8189 in clinical studies. <b>Significance Statement</b> We describe the primary pharmacology of MK-8189 a PDE10A inhibitor under evaluation for the treatment of schizophrenia. We report efficacy in preclinical models that have been used to characterize other PDE10A inhibitors and atypical antipsychotics. The PDE10A occupancy achieved by MK-8189 in behavioral studies was used to support dose selection in clinical trials. This work provides evidence to support exploration of higher levels of PDE10A occupancy in clinical trials to determine if this translates to improved efficacy in patients.</p>\",\"PeriodicalId\":16798,\"journal\":{\"name\":\"Journal of Pharmacology and Experimental Therapeutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacology and Experimental Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1124/jpet.124.002347\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.124.002347","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

MK-8189 是一种新型磷酸二酯酶 10A (PDE10A) 抑制剂,目前正在进行治疗精神分裂症的临床研究评估。PDE10A 是一种环核苷酸磷酸二酯酶,在纹状体中刺神经元中高度表达。MK-8189 对 PDE10A 酶具有亚纳摩尔效力,并具有出色的药理特性。口服 MK-8189 可显著增加大鼠纹状体组织中的 cGMP 和 pGluR1。服用 MK-8189 后,通过检测编码 P 物质(Sub P)和脑啡肽(ENK)的 mRNA 的显著升高,证明其激活了多巴胺 D1 直接和 D2 间接通路。PDE10A 示踪剂 [3H]MK-8193 被用于确定行为模型中疗效所需的 PDE10A 酶占据率 (EO)。在大鼠条件性回避反应试验中,当 PDE10A EO 超过 ~48% 时,MK-8189 能显著减少回避行为。在 PDE10A EO 为 ~47% 或更高时,MK-8189 能明显逆转 MK-801 诱导的前脉冲抑制缺陷。在 PET 研究中使用 [11C]MK-8193 对恒河猴体内 MK-8189 的靶点参与进行了检测,血浆浓度为 127nM 的 MK-8189 在纹状体中产生了 ~50% 的 EO。我们使用恒河猴的客观检索任务评估了 MK-8189 对认知症状的影响。MK-8189 能显著减轻氯胺酮诱导的物体检索能力缺陷,其暴露量可产生约 29% 的 PDE10A EO。这些发现证明了 MK-8189 对纹状体信号传导的强大影响,以及在精神分裂症相关症状临床前模型中的疗效。这些研究数据被用于建立临床前疗效、血浆暴露和 PDE10A EO 之间的关系,以指导临床研究中 MK-8189 的剂量选择。意义声明 我们描述了正在评估用于治疗精神分裂症的 PDE10A 抑制剂 MK-8189 的主要药理学。我们报告了在临床前模型中的疗效,这些模型曾被用于描述其他 PDE10A 抑制剂和非典型抗精神病药的特性。MK-8189 在行为研究中实现的 PDE10A 占有率被用于支持临床试验中的剂量选择。这项工作提供了证据,支持在临床试验中探索更高水平的 PDE10A 占位,以确定这是否能改善患者的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preclinical Evaluation of MK-8189: A Novel Phosphodiesterase 10A Inhibitor for the Treatment of Schizophrenia.

MK-8189 is a novel phosphodiesterase 10A (PDE10A) inhibitor being evaluated in clinical studies for the treatment of schizophrenia. PDE10A is a cyclic nucleotide phosphodiesterase enzyme highly expressed in medium spiny neurons of the striatum. MK-8189 exhibits sub-nanomolar potency on the PDE10A enzyme and has excellent pharmaceutical properties. Oral administration of MK-8189 significantly increased cGMP and pGluR1 in rat striatal tissues. Activation of the dopamine D1 direct and D2 indirect pathways was demonstrated by detecting significant elevation of mRNA encoding substance P (Sub P) and enkephalin (ENK) after MK-8189 administration. The PDE10A tracer [3H]MK-8193 was used determine the PDE10A enzyme occupancy (EO) required for efficacy in behavioral models. In the rat conditioned avoidance responding assay, MK-8189 significantly decreased avoidance behavior at PDE10A EO greater than ~48%. MK-8189 significantly reversed an MK-801-induced deficit in pre-pulse inhibition at PDE10A EO of ~47% and higher. Target engagement of MK-8189 in rhesus monkeys was examined with [11C]MK-8193 in PET studies and plasma concentrations of 127nM MK-8189 yielded ~50% EO in the striatum. The impact of MK-8189 on cognitive symptoms was evaluated using the objective retrieval task in rhesus monkeys. MK-8189 significantly attenuated a ketamine-induced deficit in object retrieval performance at exposure that yielded ~29% PDE10A EO. These findings demonstrate the robust impact of MK-8189 on striatal signaling and efficacy in preclinical models of symptoms associated with schizophrenia. Data from these studies were used to establish the relationship between preclinical efficacy, plasma exposures, and PDE10A EO to guide dose selection of MK-8189 in clinical studies. Significance Statement We describe the primary pharmacology of MK-8189 a PDE10A inhibitor under evaluation for the treatment of schizophrenia. We report efficacy in preclinical models that have been used to characterize other PDE10A inhibitors and atypical antipsychotics. The PDE10A occupancy achieved by MK-8189 in behavioral studies was used to support dose selection in clinical trials. This work provides evidence to support exploration of higher levels of PDE10A occupancy in clinical trials to determine if this translates to improved efficacy in patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
期刊最新文献
Preclinical Evaluation of MK-8189: A Novel Phosphodiesterase 10A Inhibitor for the Treatment of Schizophrenia. Molecular mechanisms underlying amyloid beta peptide mediated upregulation of vascular cell adhesion molecule-1 in Alzheimer's disease. Clinical Development of the GluN2B-selective NMDA Receptor Inhibitor NP10679 for the Treatment of Neurologic Deficit after Subarachnoid Hemorrhage. The Influence of the Estrous Cycle on Neuropeptide S Receptor-Mediated Behaviors. Dopamine D1-Like Receptor-Mediated Insurmountable Blockade of the Reinforcing Effects of Cocaine in Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1