Paolo Papale, Wietske Zuiderbaan, Rob R M Teeuwen, Amparo Gilhuis, Matthew W Self, Pieter R Roelfsema, Serge O Dumoulin
{"title":"V1 神经元对自然场景中的感知边界进行调谐。","authors":"Paolo Papale, Wietske Zuiderbaan, Rob R M Teeuwen, Amparo Gilhuis, Matthew W Self, Pieter R Roelfsema, Serge O Dumoulin","doi":"10.1073/pnas.2221623121","DOIUrl":null,"url":null,"abstract":"<p><p>The visual system needs to identify perceptually relevant borders to segment complex natural scenes. The primary visual cortex (V1) is thought to extract local borders, and higher visual areas are thought to identify the perceptually relevant borders between objects and the background. To test this conjecture, we used natural images that had been annotated by human observers who marked the perceptually relevant borders. We assessed the effect of perceptual relevance on V1 responses using human neuroimaging, macaque electrophysiology, and computational modeling. We report that perceptually relevant borders elicit stronger responses in the early visual cortex than irrelevant ones, even if simple features, such as contrast and the energy of oriented filters, are matched. Moreover, V1 neurons discriminate perceptually relevant borders surprisingly fast, during the early feedforward-driven activity at a latency of ~50 ms, indicating that they are tuned to the features that characterize them. We also revealed a delayed, contextual effect that enhances the V1 responses that are elicited by perceptually relevant borders at a longer latency. Our results reveal multiple mechanisms that allow V1 neurons to infer the layout of objects in natural images.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"V1 neurons are tuned to perceptual borders in natural scenes.\",\"authors\":\"Paolo Papale, Wietske Zuiderbaan, Rob R M Teeuwen, Amparo Gilhuis, Matthew W Self, Pieter R Roelfsema, Serge O Dumoulin\",\"doi\":\"10.1073/pnas.2221623121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The visual system needs to identify perceptually relevant borders to segment complex natural scenes. The primary visual cortex (V1) is thought to extract local borders, and higher visual areas are thought to identify the perceptually relevant borders between objects and the background. To test this conjecture, we used natural images that had been annotated by human observers who marked the perceptually relevant borders. We assessed the effect of perceptual relevance on V1 responses using human neuroimaging, macaque electrophysiology, and computational modeling. We report that perceptually relevant borders elicit stronger responses in the early visual cortex than irrelevant ones, even if simple features, such as contrast and the energy of oriented filters, are matched. Moreover, V1 neurons discriminate perceptually relevant borders surprisingly fast, during the early feedforward-driven activity at a latency of ~50 ms, indicating that they are tuned to the features that characterize them. We also revealed a delayed, contextual effect that enhances the V1 responses that are elicited by perceptually relevant borders at a longer latency. Our results reveal multiple mechanisms that allow V1 neurons to infer the layout of objects in natural images.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2221623121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2221623121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
V1 neurons are tuned to perceptual borders in natural scenes.
The visual system needs to identify perceptually relevant borders to segment complex natural scenes. The primary visual cortex (V1) is thought to extract local borders, and higher visual areas are thought to identify the perceptually relevant borders between objects and the background. To test this conjecture, we used natural images that had been annotated by human observers who marked the perceptually relevant borders. We assessed the effect of perceptual relevance on V1 responses using human neuroimaging, macaque electrophysiology, and computational modeling. We report that perceptually relevant borders elicit stronger responses in the early visual cortex than irrelevant ones, even if simple features, such as contrast and the energy of oriented filters, are matched. Moreover, V1 neurons discriminate perceptually relevant borders surprisingly fast, during the early feedforward-driven activity at a latency of ~50 ms, indicating that they are tuned to the features that characterize them. We also revealed a delayed, contextual effect that enhances the V1 responses that are elicited by perceptually relevant borders at a longer latency. Our results reveal multiple mechanisms that allow V1 neurons to infer the layout of objects in natural images.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.