{"title":"氧化锌纳米粒子与植物叶球合作,提高热浪胁迫下水稻的产量和营养品质。","authors":"Shuqing Guo, Xiangang Hu, Zixuan Wang, Fubo Yu, Xuan Hou, Baoshan Xing","doi":"10.1073/pnas.2414822121","DOIUrl":null,"url":null,"abstract":"<p><p>To address rising global food demand, the development of sustainable technologies to increase productivity is urgently needed. This study revealed that foliar application of zinc oxide nanoparticles (ZnO NPs; 30 to 80 nm, 0.67 mg/d per plant, 6 d) to rice leaves under heatwave (HW) stress increased the grain yield and nutritional quality. Compared with the HW control, the HWs+ZnO group presented increases in the grain yield, grain protein content, and amino acid content of 22.1%, 11.8%, and 77.5%, respectively. Nanoscale ZnO aggregated on the leaf surface and interacted with leaf surface molecules. Compared with that at ambient temperature, HW treatment increased the dissolution of ZnO NPs on the leaf surface by 25.9% and facilitated their translocation to mesophyll cells. The Zn in the leaves existed as both ionic Zn and particulate ZnO. Compared with the HW control, foliar application of ZnO NPs under HW conditions increased leaf nutrient levels (Zn, Mn, Cu, Fe, and Mg) by 15.8 to 416.9%, the chlorophyll content by 22.2 to 24.8%, Rubisco enzyme activity by 21.2%, and antioxidant activity by 26.7 to 31.2%. Transcriptomic analyses revealed that ZnO NPs reversed HW-induced transcriptomic dysregulation, thereby enhancing leaf photosynthesis by 74.4%. Additionally, ZnO NPs increased the diversity, stability, and enrichment of beneficial microbial taxa and protected the phyllosphere microbial community from HW damage. This work elucidates how NPs interact with the phyllosphere, highlighting the potential of NPs to promote sustainable agriculture, especially under extreme climate events (e.g., HWs).</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc oxide nanoparticles cooperate with the phyllosphere to promote grain yield and nutritional quality of rice under heatwave stress.\",\"authors\":\"Shuqing Guo, Xiangang Hu, Zixuan Wang, Fubo Yu, Xuan Hou, Baoshan Xing\",\"doi\":\"10.1073/pnas.2414822121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address rising global food demand, the development of sustainable technologies to increase productivity is urgently needed. This study revealed that foliar application of zinc oxide nanoparticles (ZnO NPs; 30 to 80 nm, 0.67 mg/d per plant, 6 d) to rice leaves under heatwave (HW) stress increased the grain yield and nutritional quality. Compared with the HW control, the HWs+ZnO group presented increases in the grain yield, grain protein content, and amino acid content of 22.1%, 11.8%, and 77.5%, respectively. Nanoscale ZnO aggregated on the leaf surface and interacted with leaf surface molecules. Compared with that at ambient temperature, HW treatment increased the dissolution of ZnO NPs on the leaf surface by 25.9% and facilitated their translocation to mesophyll cells. The Zn in the leaves existed as both ionic Zn and particulate ZnO. Compared with the HW control, foliar application of ZnO NPs under HW conditions increased leaf nutrient levels (Zn, Mn, Cu, Fe, and Mg) by 15.8 to 416.9%, the chlorophyll content by 22.2 to 24.8%, Rubisco enzyme activity by 21.2%, and antioxidant activity by 26.7 to 31.2%. Transcriptomic analyses revealed that ZnO NPs reversed HW-induced transcriptomic dysregulation, thereby enhancing leaf photosynthesis by 74.4%. Additionally, ZnO NPs increased the diversity, stability, and enrichment of beneficial microbial taxa and protected the phyllosphere microbial community from HW damage. This work elucidates how NPs interact with the phyllosphere, highlighting the potential of NPs to promote sustainable agriculture, especially under extreme climate events (e.g., HWs).</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2414822121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2414822121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Zinc oxide nanoparticles cooperate with the phyllosphere to promote grain yield and nutritional quality of rice under heatwave stress.
To address rising global food demand, the development of sustainable technologies to increase productivity is urgently needed. This study revealed that foliar application of zinc oxide nanoparticles (ZnO NPs; 30 to 80 nm, 0.67 mg/d per plant, 6 d) to rice leaves under heatwave (HW) stress increased the grain yield and nutritional quality. Compared with the HW control, the HWs+ZnO group presented increases in the grain yield, grain protein content, and amino acid content of 22.1%, 11.8%, and 77.5%, respectively. Nanoscale ZnO aggregated on the leaf surface and interacted with leaf surface molecules. Compared with that at ambient temperature, HW treatment increased the dissolution of ZnO NPs on the leaf surface by 25.9% and facilitated their translocation to mesophyll cells. The Zn in the leaves existed as both ionic Zn and particulate ZnO. Compared with the HW control, foliar application of ZnO NPs under HW conditions increased leaf nutrient levels (Zn, Mn, Cu, Fe, and Mg) by 15.8 to 416.9%, the chlorophyll content by 22.2 to 24.8%, Rubisco enzyme activity by 21.2%, and antioxidant activity by 26.7 to 31.2%. Transcriptomic analyses revealed that ZnO NPs reversed HW-induced transcriptomic dysregulation, thereby enhancing leaf photosynthesis by 74.4%. Additionally, ZnO NPs increased the diversity, stability, and enrichment of beneficial microbial taxa and protected the phyllosphere microbial community from HW damage. This work elucidates how NPs interact with the phyllosphere, highlighting the potential of NPs to promote sustainable agriculture, especially under extreme climate events (e.g., HWs).
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.